
Defeasible Reasoning over Facts and Norms

Emery Neufeld

What are Norms?

Norms

We can represent norms explicitly or implicitly.

• Represent norms explicitly as
rules.

• E.g., “p is obligatory”

• Represent norms implicitly as
descriptions.

• E.g., “always p”

Norms can be...

Social Ethical Legal

Defeasible Reasoning over Facts and Norms 1

What are Norms?

Norms

We can represent norms explicitly or implicitly.

• Represent norms explicitly as
rules.

• E.g., “p is obligatory”

• Represent norms implicitly as
descriptions.

• E.g., “always p”

Norms can be...

Social Ethical Legal

Defeasible Reasoning over Facts and Norms 1

What are Norms?

Norms

We can represent norms explicitly or implicitly.

• Represent norms explicitly as
rules.

• E.g., “p is obligatory”

• Represent norms implicitly as
descriptions.

• E.g., “always p”

Norms can be...

Social Ethical Legal

Defeasible Reasoning over Facts and Norms 1

What are Norms?

Norms

We can represent norms explicitly or implicitly.

• Represent norms explicitly as
rules.

• E.g., “p is obligatory”

• Represent norms implicitly as
descriptions.

• E.g., “always p”

Norms can be...

Social Ethical Legal

Defeasible Reasoning over Facts and Norms 1

What are Norms?

Norms

We can represent norms explicitly or implicitly.

• Represent norms explicitly as
rules.

• E.g., “p is obligatory”

• Represent norms implicitly as
descriptions.

• E.g., “always p”

Norms can be...

Social Ethical Legal

Defeasible Reasoning over Facts and Norms 1

What are Norms?

Norms

We can represent norms explicitly or implicitly.

• Represent norms explicitly as
rules.

• E.g., “p is obligatory”

• Represent norms implicitly as
descriptions.

• E.g., “always p”

Norms can be...

Social Ethical Legal

Defeasible Reasoning over Facts and Norms 1

What are Norms?

Norms

We can represent norms explicitly or implicitly.

• Represent norms explicitly as
rules.

• E.g., “p is obligatory”

• Represent norms implicitly as
descriptions.

• E.g., “always p”

Norms can be...

Social

Ethical Legal

Defeasible Reasoning over Facts and Norms 1

What are Norms?

Norms

We can represent norms explicitly or implicitly.

• Represent norms explicitly as
rules.

• E.g., “p is obligatory”

• Represent norms implicitly as
descriptions.

• E.g., “always p”

Norms can be...

Social Ethical

Legal

Defeasible Reasoning over Facts and Norms 1

What are Norms?

Norms

We can represent norms explicitly or implicitly.

• Represent norms explicitly as
rules.

• E.g., “p is obligatory”

• Represent norms implicitly as
descriptions.

• E.g., “always p”

Norms can be...

Social Ethical Legal

Defeasible Reasoning over Facts and Norms 1

Types of Norms

Norms can be...

Regulative Norms

Regulative norms can be:
• Obligations O(p|q)

• “On Sunday, you ought to bake a cake."
• Prohibitions F(p|q) ≡ O(¬p|q)

• “You are forbidden from eating cake.”
• (Weak) Permissions Pw (p|q) ≡ ¬O(¬p|q)

• “On Tuesday, you are permitted to eat carrot
cake.”

• Conflict!
• (Strong) Permissions Ps(p)

• “On Tuesday, you are permitted to eat carrot
cake.”

• No conflict :)

Constitutive Norms

Constitutive norms are:
• “in context C, X counts as Y"

• C(X , Y |C)
• Used to define new

concepts.
• “Eating carrot cake counts

as eating cake”.

Defeasible Reasoning over Facts and Norms 2

Types of Norms

Norms can be...

Regulative Norms

Regulative norms can be:
• Obligations O(p|q)

• “On Sunday, you ought to bake a cake."

• Prohibitions F(p|q) ≡ O(¬p|q)
• “You are forbidden from eating cake.”

• (Weak) Permissions Pw (p|q) ≡ ¬O(¬p|q)
• “On Tuesday, you are permitted to eat carrot

cake.”
• Conflict!

• (Strong) Permissions Ps(p)
• “On Tuesday, you are permitted to eat carrot

cake.”
• No conflict :)

Constitutive Norms

Constitutive norms are:
• “in context C, X counts as Y"

• C(X , Y |C)
• Used to define new

concepts.
• “Eating carrot cake counts

as eating cake”.

Defeasible Reasoning over Facts and Norms 2

Types of Norms

Norms can be...

Regulative Norms

Regulative norms can be:
• Obligations O(p|q)

• “On Sunday, you ought to bake a cake."
• Prohibitions F(p|q) ≡ O(¬p|q)

• “You are forbidden from eating cake.”

• (Weak) Permissions Pw (p|q) ≡ ¬O(¬p|q)
• “On Tuesday, you are permitted to eat carrot

cake.”
• Conflict!

• (Strong) Permissions Ps(p)
• “On Tuesday, you are permitted to eat carrot

cake.”
• No conflict :)

Constitutive Norms

Constitutive norms are:
• “in context C, X counts as Y"

• C(X , Y |C)
• Used to define new

concepts.
• “Eating carrot cake counts

as eating cake”.

Defeasible Reasoning over Facts and Norms 2

Types of Norms

Norms can be...

Regulative Norms

Regulative norms can be:
• Obligations O(p|q)

• “On Sunday, you ought to bake a cake."
• Prohibitions F(p|q) ≡ O(¬p|q)

• “You are forbidden from eating cake.”
• (Weak) Permissions Pw (p|q) ≡ ¬O(¬p|q)

• “On Tuesday, you are permitted to eat carrot
cake.”

• Conflict!
• (Strong) Permissions Ps(p)

• “On Tuesday, you are permitted to eat carrot
cake.”

• No conflict :)

Constitutive Norms

Constitutive norms are:
• “in context C, X counts as Y"

• C(X , Y |C)
• Used to define new

concepts.
• “Eating carrot cake counts

as eating cake”.

Defeasible Reasoning over Facts and Norms 2

Types of Norms

Norms can be...

Regulative Norms

Regulative norms can be:
• Obligations O(p|q)

• “On Sunday, you ought to bake a cake."
• Prohibitions F(p|q) ≡ O(¬p|q)

• “You are forbidden from eating cake.”
• (Weak) Permissions Pw (p|q) ≡ ¬O(¬p|q)

• “On Tuesday, you are permitted to eat carrot
cake.”

• Conflict!

• (Strong) Permissions Ps(p)
• “On Tuesday, you are permitted to eat carrot

cake.”
• No conflict :)

Constitutive Norms

Constitutive norms are:
• “in context C, X counts as Y"

• C(X , Y |C)
• Used to define new

concepts.
• “Eating carrot cake counts

as eating cake”.

Defeasible Reasoning over Facts and Norms 2

Types of Norms

Norms can be...

Regulative Norms

Regulative norms can be:
• Obligations O(p|q)

• “On Sunday, you ought to bake a cake."
• Prohibitions F(p|q) ≡ O(¬p|q)

• “You are forbidden from eating cake.”
• (Weak) Permissions Pw (p|q) ≡ ¬O(¬p|q)

• “On Tuesday, you are permitted to eat carrot
cake.”

• Conflict!
• (Strong) Permissions Ps(p)

• “On Tuesday, you are permitted to eat carrot
cake.”

• No conflict :)

Constitutive Norms

Constitutive norms are:
• “in context C, X counts as Y"

• C(X , Y |C)
• Used to define new

concepts.
• “Eating carrot cake counts

as eating cake”.

Defeasible Reasoning over Facts and Norms 2

Types of Norms

Norms can be...

Regulative Norms

Regulative norms can be:
• Obligations O(p|q)

• “On Sunday, you ought to bake a cake."
• Prohibitions F(p|q) ≡ O(¬p|q)

• “You are forbidden from eating cake.”
• (Weak) Permissions Pw (p|q) ≡ ¬O(¬p|q)

• “On Tuesday, you are permitted to eat carrot
cake.”

• Conflict!
• (Strong) Permissions Ps(p)

• “On Tuesday, you are permitted to eat carrot
cake.”

• No conflict :)

Constitutive Norms

Constitutive norms are:
• “in context C, X counts as Y"

• C(X , Y |C)
• Used to define new

concepts.
• “Eating carrot cake counts

as eating cake”.

Defeasible Reasoning over Facts and Norms 2

Normative Systems

Regulative Norms + Constitutive norms = Normative System

Normative System Example

• You are forbidden from eating cake: F(cake|⊤)

• You are permitted to eat carrot cake on Tuesday: P(carrot |tuesday)
• Eating carrot cake counts as eating cake: C(carrot , cake|⊤)

• Correct conclusion: you can only eat (carrot) cake on Tuesdays.

Defeasible Reasoning over Facts and Norms 3

Normative Systems

Regulative Norms + Constitutive norms = Normative System

Normative System Example

• You are forbidden from eating cake: F(cake|⊤)

• You are permitted to eat carrot cake on Tuesday: P(carrot |tuesday)
• Eating carrot cake counts as eating cake: C(carrot , cake|⊤)

• Correct conclusion: you can only eat (carrot) cake on Tuesdays.

Defeasible Reasoning over Facts and Norms 3

Normative Systems

Regulative Norms + Constitutive norms = Normative System

Normative System Example

• You are forbidden from eating cake: F(cake|⊤)

• You are permitted to eat carrot cake on Tuesday: P(carrot |tuesday)
• Eating carrot cake counts as eating cake: C(carrot , cake|⊤)

• Correct conclusion: you can only eat (carrot) cake on Tuesdays.

Defeasible Reasoning over Facts and Norms 3

Compliance

Factual Detachment

O(p|q) ∧ q =⇒ O(p)

Compliance to Obligations

• Compliance := not violated

• An obligation O(p) is violated when
O(p) is true but p is not.

Compliance to Normative Systems

• Compliance := no violations.

• Violation of normative system: for
some p, O(p) is true but p is not.

Permissions cannot be violated!

Defeasible Reasoning over Facts and Norms 4

Compliance

Factual Detachment

O(p|q) ∧ q =⇒ O(p)

Compliance to Obligations

• Compliance := not violated

• An obligation O(p) is violated when
O(p) is true but p is not.

Compliance to Normative Systems

• Compliance := no violations.

• Violation of normative system: for
some p, O(p) is true but p is not.

Permissions cannot be violated!

Defeasible Reasoning over Facts and Norms 4

Compliance

Factual Detachment

O(p|q) ∧ q =⇒ O(p)

Compliance to Obligations

• Compliance := not violated

• An obligation O(p) is violated when
O(p) is true but p is not.

Compliance to Normative Systems

• Compliance := no violations.

• Violation of normative system: for
some p, O(p) is true but p is not.

Permissions cannot be violated!

Defeasible Reasoning over Facts and Norms 4

Challenges Associated with Reasoning about Norms

• Strong Permissions

• Act as exceptions to obligations or prohibitions.

• Have no other function; cannot constrain, cannot be violated.

• Conflict and Priorities

• “When driving, you ought not swerve into another lane.”

• “If it is to avoid a collision, you ought to swerve into another lane.”

• Normative Deadlock

• What happens when compliance is not possible?

• E.g., contrary-to-duty obligations:

• “You ought not kill.”

• “If you kill, you ought to kill gently.”

Defeasible Reasoning over Facts and Norms 5

Challenges Associated with Reasoning about Norms

• Strong Permissions

• Act as exceptions to obligations or prohibitions.

• Have no other function; cannot constrain, cannot be violated.

• Conflict and Priorities

• “When driving, you ought not swerve into another lane.”

• “If it is to avoid a collision, you ought to swerve into another lane.”

• Normative Deadlock

• What happens when compliance is not possible?

• E.g., contrary-to-duty obligations:

• “You ought not kill.”

• “If you kill, you ought to kill gently.”

Defeasible Reasoning over Facts and Norms 5

Challenges Associated with Reasoning about Norms

• Strong Permissions

• Act as exceptions to obligations or prohibitions.

• Have no other function; cannot constrain, cannot be violated.

• Conflict and Priorities

• “When driving, you ought not swerve into another lane.”

• “If it is to avoid a collision, you ought to swerve into another lane.”

• Normative Deadlock

• What happens when compliance is not possible?

• E.g., contrary-to-duty obligations:

• “You ought not kill.”

• “If you kill, you ought to kill gently.”

Defeasible Reasoning over Facts and Norms 5

Challenges Associated with Reasoning about Norms

• Strong Permissions

• Act as exceptions to obligations or prohibitions.

• Have no other function; cannot constrain, cannot be violated.

• Conflict and Priorities

• “When driving, you ought not swerve into another lane.”

• “If it is to avoid a collision, you ought to swerve into another lane.”

• Normative Deadlock

• What happens when compliance is not possible?

• E.g., contrary-to-duty obligations:

• “You ought not kill.”

• “If you kill, you ought to kill gently.”

Defeasible Reasoning over Facts and Norms 5

Challenges Associated with Reasoning about Norms

• Strong Permissions

• Act as exceptions to obligations or prohibitions.

• Have no other function; cannot constrain, cannot be violated.

• Conflict and Priorities

• “When driving, you ought not swerve into another lane.”

• “If it is to avoid a collision, you ought to swerve into another lane.”

• Normative Deadlock

• What happens when compliance is not possible?

• E.g., contrary-to-duty obligations:

• “You ought not kill.”

• “If you kill, you ought to kill gently.”

Defeasible Reasoning over Facts and Norms 5

Challenges Associated with Reasoning about Norms

• Strong Permissions

• Act as exceptions to obligations or prohibitions.

• Have no other function; cannot constrain, cannot be violated.

• Conflict and Priorities

• “When driving, you ought not swerve into another lane.”

• “If it is to avoid a collision, you ought to swerve into another lane.”

• Normative Deadlock

• What happens when compliance is not possible?

• E.g., contrary-to-duty obligations:

• “You ought not kill.”

• “If you kill, you ought to kill gently.”

Defeasible Reasoning over Facts and Norms 5

Challenges Associated with Reasoning about Norms

• Strong Permissions

• Act as exceptions to obligations or prohibitions.

• Have no other function; cannot constrain, cannot be violated.

• Conflict and Priorities

• “When driving, you ought not swerve into another lane.”

• “If it is to avoid a collision, you ought to swerve into another lane.”

• Normative Deadlock

• What happens when compliance is not possible?

• E.g., contrary-to-duty obligations:

• “You ought not kill.”

• “If you kill, you ought to kill gently.”

Defeasible Reasoning over Facts and Norms 5

Challenges Associated with Reasoning about Norms

• Strong Permissions

• Act as exceptions to obligations or prohibitions.

• Have no other function; cannot constrain, cannot be violated.

• Conflict and Priorities

• “When driving, you ought not swerve into another lane.”

• “If it is to avoid a collision, you ought to swerve into another lane.”

• Normative Deadlock

• What happens when compliance is not possible?

• E.g., contrary-to-duty obligations:

• “You ought not kill.”

• “If you kill, you ought to kill gently.”

Defeasible Reasoning over Facts and Norms 5

Monotonicity

Definition

Γ1 ⊢ ϕ =⇒ Γ1 ∪ Γ2 ⊢ ϕ

Example

• Birds can fly. (bird → fly)
• Sparrows are birds. (sparrow → bird)
• {bird → fly , sparrow → bird} ⊢ sparrow → fly
• Add: fish cannot fly.

{bird → fly , sparrow → bird} ∪ {fish → ¬fly}⊢ sparrow → fly

Defeasible Reasoning over Facts and Norms 6

Monotonicity

Definition

Γ1 ⊢ ϕ =⇒ Γ1 ∪ Γ2 ⊢ ϕ

Example

• Birds can fly. (bird → fly)
• Sparrows are birds. (sparrow → bird)

• {bird → fly , sparrow → bird} ⊢ sparrow → fly
• Add: fish cannot fly.

{bird → fly , sparrow → bird} ∪ {fish → ¬fly}⊢ sparrow → fly

Defeasible Reasoning over Facts and Norms 6

Monotonicity

Definition

Γ1 ⊢ ϕ =⇒ Γ1 ∪ Γ2 ⊢ ϕ

Example

• Birds can fly. (bird → fly)
• Sparrows are birds. (sparrow → bird)
• {bird → fly , sparrow → bird} ⊢ sparrow → fly

• Add: fish cannot fly.
{bird → fly , sparrow → bird} ∪ {fish → ¬fly}⊢ sparrow → fly

Defeasible Reasoning over Facts and Norms 6

Monotonicity

Definition

Γ1 ⊢ ϕ =⇒ Γ1 ∪ Γ2 ⊢ ϕ

Example

• Birds can fly. (bird → fly)
• Sparrows are birds. (sparrow → bird)
• {bird → fly , sparrow → bird} ⊢ sparrow → fly
• Add: fish cannot fly.

{bird → fly , sparrow → bird} ∪ {fish → ¬fly}

⊢ sparrow → fly

Defeasible Reasoning over Facts and Norms 6

Monotonicity

Definition

Γ1 ⊢ ϕ =⇒ Γ1 ∪ Γ2 ⊢ ϕ

Example

• Birds can fly. (bird → fly)
• Sparrows are birds. (sparrow → bird)
• {bird → fly , sparrow → bird} ⊢ sparrow → fly
• Add: fish cannot fly.

{bird → fly , sparrow → bird} ∪ {fish → ¬fly}⊢ sparrow → fly

Defeasible Reasoning over Facts and Norms 6

Why Non-monotonicity?

Example

1 Birds can fly (bird → fly)

2 Sparrows are birds (sparrow → bird)

• We can derive: sparrows can fly
(sparrow → fly)

1 Birds can fly. (bird → fly)

2 Penguins are birds. (penguin → bird)

• We can derive: penguins can fly???
(penguin → fly)

Defeasible Reasoning over Facts and Norms 7

Why Non-monotonicity?

Example

1 Birds can fly (bird → fly)

2 Sparrows are birds (sparrow → bird)

• We can derive: sparrows can fly
(sparrow → fly)

1 Birds can fly. (bird → fly)

2 Penguins are birds. (penguin → bird)

• We can derive: penguins can fly???
(penguin → fly)

Defeasible Reasoning over Facts and Norms 7

Why Non-monotonicity?

Example

1 Birds can fly (bird → fly)

2 Sparrows are birds (sparrow → bird)

• We can derive: sparrows can fly
(sparrow → fly)

1 Birds can fly. (bird → fly)

2 Penguins are birds. (penguin → bird)

• We can derive: penguins can fly???
(penguin → fly)

Defeasible Reasoning over Facts and Norms 7

Non-monotonicity

Example, continued...

1 Birds can fly (bird → fly)

2 Penguins are birds (penguin → bird)

3 Penguins cannot fly (penguin → ¬fly)

• Is this necessarily a contradiction?

Defeasible Reasoning over Facts and Norms 8

Non-monotonicity

Example, continued...

1 Birds can fly (bird → fly)

2 Penguins are birds (penguin → bird)

3 Penguins cannot fly (penguin → ¬fly)

• Is this necessarily a contradiction?

Defeasible Reasoning over Facts and Norms 8

Non-monotonicity

Example, continued...

1 Birds can fly (bird → fly)

2 Penguins are birds (penguin → bird)

3 Penguins cannot fly (penguin → ¬fly)

• Is this necessarily a contradiction?

Defeasible Reasoning over Facts and Norms 8

Defeasible Logic (DL): Rules

Literals

AP := atomic propositions

Lit := AP ∪ {¬p | p ∈ AP}

Rules

r : A(r) ↪→ N(r)

• A(r) = {a1, ..., an} ∈ 2Lit is an antecedent.
• N(r) ∈ Lit is a consequent.
• ↪→∈ {→ ,⇒,⇝}

Defeasible Theories

A defeasible theory is a tuple:
⟨F ,R, >⟩

where F ⊂ Lit is a set of facts, R is a set of rules, and > is a superiority relation over
rules.

From a defeasible theory, we can derive conclusions.

Defeasible Reasoning over Facts and Norms 9

Defeasible Logic (DL): Rules

Literals

AP := atomic propositions

Lit := AP ∪ {¬p | p ∈ AP}

Rules

r : A(r) ↪→ N(r)

• A(r) = {a1, ..., an} ∈ 2Lit is an antecedent.
• N(r) ∈ Lit is a consequent.
• ↪→∈ {→ ,⇒,⇝}

Defeasible Theories

A defeasible theory is a tuple:
⟨F ,R, >⟩

where F ⊂ Lit is a set of facts, R is a set of rules, and > is a superiority relation over
rules.

From a defeasible theory, we can derive conclusions.

Defeasible Reasoning over Facts and Norms 9

Defeasible Logic (DL): Rules

Literals

AP := atomic propositions

Lit := AP ∪ {¬p | p ∈ AP}

Rules

r : A(r) ↪→ N(r)

• A(r) = {a1, ..., an} ∈ 2Lit is an antecedent.
• N(r) ∈ Lit is a consequent.

• ↪→∈ {→ ,⇒,⇝}

Defeasible Theories

A defeasible theory is a tuple:
⟨F ,R, >⟩

where F ⊂ Lit is a set of facts, R is a set of rules, and > is a superiority relation over
rules.

From a defeasible theory, we can derive conclusions.

Defeasible Reasoning over Facts and Norms 9

Defeasible Logic (DL): Rules

Literals

AP := atomic propositions

Lit := AP ∪ {¬p | p ∈ AP}

Rules

r : A(r) ↪→ N(r)

• A(r) = {a1, ..., an} ∈ 2Lit is an antecedent.
• N(r) ∈ Lit is a consequent.
• ↪→∈ {→

,⇒,⇝}

Defeasible Theories

A defeasible theory is a tuple:
⟨F ,R, >⟩

where F ⊂ Lit is a set of facts, R is a set of rules, and > is a superiority relation over
rules.

From a defeasible theory, we can derive conclusions.

Defeasible Reasoning over Facts and Norms 9

Defeasible Logic (DL): Rules

Literals

AP := atomic propositions

Lit := AP ∪ {¬p | p ∈ AP}

Rules

r : A(r) ↪→ N(r)

• A(r) = {a1, ..., an} ∈ 2Lit is an antecedent.
• N(r) ∈ Lit is a consequent.
• ↪→∈ {→ ,⇒

,⇝}

Defeasible Theories

A defeasible theory is a tuple:
⟨F ,R, >⟩

where F ⊂ Lit is a set of facts, R is a set of rules, and > is a superiority relation over
rules.

From a defeasible theory, we can derive conclusions.

Defeasible Reasoning over Facts and Norms 9

Defeasible Logic (DL): Rules

Literals

AP := atomic propositions

Lit := AP ∪ {¬p | p ∈ AP}

Rules

r : A(r) ↪→ N(r)

• A(r) = {a1, ..., an} ∈ 2Lit is an antecedent.
• N(r) ∈ Lit is a consequent.
• ↪→∈ {→ ,⇒,⇝}

Defeasible Theories

A defeasible theory is a tuple:
⟨F ,R, >⟩

where F ⊂ Lit is a set of facts, R is a set of rules, and > is a superiority relation over
rules.

From a defeasible theory, we can derive conclusions.

Defeasible Reasoning over Facts and Norms 9

Defeasible Logic (DL): Rules

Literals

AP := atomic propositions

Lit := AP ∪ {¬p | p ∈ AP}

Rules

r : A(r) ↪→ N(r)

• A(r) = {a1, ..., an} ∈ 2Lit is an antecedent.
• N(r) ∈ Lit is a consequent.
• ↪→∈ {→ ,⇒,⇝}

Defeasible Theories

A defeasible theory is a tuple:
⟨F ,R, >⟩

where F ⊂ Lit is a set of facts, R is a set of rules, and > is a superiority relation over
rules.

From a defeasible theory, we can derive conclusions.

Defeasible Reasoning over Facts and Norms 9

Defeasible Logic (DL): Rules

Literals

AP := atomic propositions

Lit := AP ∪ {¬p | p ∈ AP}

Rules

r : A(r) ↪→ N(r)

• A(r) = {a1, ..., an} ∈ 2Lit is an antecedent.
• N(r) ∈ Lit is a consequent.
• ↪→∈ {→ ,⇒,⇝}

Defeasible Theories

A defeasible theory is a tuple:
⟨F ,R, >⟩

where F ⊂ Lit is a set of facts, R is a set of rules, and > is a superiority relation over
rules.

From a defeasible theory, we can derive conclusions.

Defeasible Reasoning over Facts and Norms 9

Defeasible Logic (DL): Definite Conclusions

Derived recursively:

Definite Provability

Given a defeasible theory D, if D ⊢ +∆p, then either:

1 p is a fact (p ∈ F), or
2 There is a strict rule r such that:

1 N(r) = p
2 and for every ai ∈ A(r), D ⊢ +∆ai .

Definite Refutability

Given a defeasible theory D, if D ⊢ −∆p, then:

1 p is not a fact (p /∈ F), and

2 For all strict rules r such that N(r) = p, it is the case that ∃ai ∈ A(r) such that
D ⊢ −∆ai .

Can be computed in linear time!

Defeasible Reasoning over Facts and Norms 10

Defeasible Logic (DL): Definite Conclusions

Derived recursively:

Definite Provability

Given a defeasible theory D, if D ⊢ +∆p, then either:

1 p is a fact (p ∈ F), or
2 There is a strict rule r such that:

1 N(r) = p
2 and for every ai ∈ A(r), D ⊢ +∆ai .

Definite Refutability

Given a defeasible theory D, if D ⊢ −∆p, then:

1 p is not a fact (p /∈ F), and

2 For all strict rules r such that N(r) = p, it is the case that ∃ai ∈ A(r) such that
D ⊢ −∆ai .

Can be computed in linear time!

Defeasible Reasoning over Facts and Norms 10

Defeasible Logic (DL): Defeasible Conclusions (pt 1)

Again, derived recursively:

Defeasible Provability

Given a defeasible theory D, If D ⊢ +∂p, either D ⊢ +∆p or:
1 There is a strict or defeasible rule r such that:

1 N(r) = p and
2 for every ai ∈ A(r), D ⊢ +∂ai , and

2 D ⊢ −∆¬p, and
3 For all rules r ′ such that N(r ′) = ¬p, either:

1 there is an ai ∈ A(r ′) such that D ⊢ −∂ai , or
2 There is a strict or defeasible rule r ′′ such that:

1 N(r ′′) = p,
2 for all ai ∈ A(r ′′), D ⊢ +∂ai , and
3 r ′′ > r ′.

Defeasible Reasoning over Facts and Norms 11

Defeasible Logic (DL): Defeasible Conclusions (pt 2)

Defeasible Refutability

Given a defeasible theory D, If D ⊢ −∂p, D ⊢ −∆p and:

1 For all strict and defeasible rules r such that N(r) = p there is ai ∈ A(r) such that
D ⊢ −∂ai , or

2 +∆¬p, or
3 There is a rule r ′ such that:

1 N(r ′) = ¬p,
2 For all ai ∈ A(r ′), D ⊢ +∂ai , and
3 For all strict or defeasible rules r ′′ such that N(r) = p, either

1 there is a ai ∈ A(r ′′) such that D ⊢ −∂ai , or
2 r ′′ ≯ r ′.

Can be computed in linear time!

Defeasible Reasoning over Facts and Norms 12

Formalizing in DL

Example: the Sparrow

1 Birds can fly. (r1 : bird ⇒ fly)

2 Sparrows are birds. (r2 : sparrow → bird)

• Suppose we have sparrow as a fact. So +∆sparrow .
• Then we can derive +∆bird from +∆sparrow and r2.
• This means we can derive +∂fly from +∆bird and r1.

Defeasible Reasoning over Facts and Norms 13

Formalizing in DL

Example: the Sparrow

1 Birds can fly. (r1 : bird ⇒ fly)

2 Sparrows are birds. (r2 : sparrow → bird)

• Suppose we have sparrow as a fact. So +∆sparrow .

• Then we can derive +∆bird from +∆sparrow and r2.
• This means we can derive +∂fly from +∆bird and r1.

Defeasible Reasoning over Facts and Norms 13

Formalizing in DL

Example: the Sparrow

1 Birds can fly. (r1 : bird ⇒ fly)

2 Sparrows are birds. (r2 : sparrow → bird)

• Suppose we have sparrow as a fact. So +∆sparrow .
• Then we can derive +∆bird from +∆sparrow and r2.

• This means we can derive +∂fly from +∆bird and r1.

Defeasible Reasoning over Facts and Norms 13

Formalizing in DL

Example: the Sparrow

1 Birds can fly. (r1 : bird ⇒ fly)

2 Sparrows are birds. (r2 : sparrow → bird)

• Suppose we have sparrow as a fact. So +∆sparrow .
• Then we can derive +∆bird from +∆sparrow and r2.
• This means we can derive +∂fly from +∆bird and r1.

Defeasible Reasoning over Facts and Norms 13

Another attempt at Non-monotonicity

Example: the Penguin (with a defeater)

1 Birds can fly. (r1 : bird ⇒ fly)

2 Penguins are birds. (r3 : penguin → bird)

3 Penguins don’t fly. (r4 : penguin ⇝ ¬fly)

• Suppose we have penguin as a fact. So +∆penguin.
• Then we can derive +∆bird from r3 and +∆penguin
• Then we cannot derive +∂fly from r1 and +∆bird ; r4 prevents this.

Example: the Penguin (with a superiority relation)

1 Birds can fly. (r1 : bird ⇒ fly)

2 Penguins are birds. (r3 : penguin → bird)

3 Penguins don’t fly (r5 : penguin ⇒ ¬fly)

4 r5 > r1

• Suppose we have penguin as a fact. So +∆penguin.
• Then we can derive +∆bird from r3 and +∆penguin
• Then we derive +∂¬fly from r5 and +∆penguin; r1 conflicts, but is defeated.

Defeasible Reasoning over Facts and Norms 14

Another attempt at Non-monotonicity

Example: the Penguin (with a defeater)

1 Birds can fly. (r1 : bird ⇒ fly)

2 Penguins are birds. (r3 : penguin → bird)

3 Penguins don’t fly. (r4 : penguin ⇝ ¬fly)

• Suppose we have penguin as a fact. So +∆penguin.
• Then we can derive +∆bird from r3 and +∆penguin
• Then we cannot derive +∂fly from r1 and +∆bird ; r4 prevents this.

Example: the Penguin (with a superiority relation)

1 Birds can fly. (r1 : bird ⇒ fly)

2 Penguins are birds. (r3 : penguin → bird)

3 Penguins don’t fly (r5 : penguin ⇒ ¬fly)

4 r5 > r1

• Suppose we have penguin as a fact. So +∆penguin.
• Then we can derive +∆bird from r3 and +∆penguin
• Then we derive +∂¬fly from r5 and +∆penguin; r1 conflicts, but is defeated.

Defeasible Reasoning over Facts and Norms 14

Another attempt at Non-monotonicity

Example: the Penguin (with a defeater)

1 Birds can fly. (r1 : bird ⇒ fly)

2 Penguins are birds. (r3 : penguin → bird)

3 Penguins don’t fly. (r4 : penguin ⇝ ¬fly)

• Suppose we have penguin as a fact. So +∆penguin.
• Then we can derive +∆bird from r3 and +∆penguin
• Then we cannot derive +∂fly from r1 and +∆bird ; r4 prevents this.

Example: the Penguin (with a superiority relation)

1 Birds can fly. (r1 : bird ⇒ fly)

2 Penguins are birds. (r3 : penguin → bird)

3 Penguins don’t fly (r5 : penguin ⇒ ¬fly)

4 r5 > r1

• Suppose we have penguin as a fact. So +∆penguin.
• Then we can derive +∆bird from r3 and +∆penguin
• Then we derive +∂¬fly from r5 and +∆penguin; r1 conflicts, but is defeated.

Defeasible Reasoning over Facts and Norms 14

Another attempt at Non-monotonicity

Example: the Penguin (with a defeater)

1 Birds can fly. (r1 : bird ⇒ fly)

2 Penguins are birds. (r3 : penguin → bird)

3 Penguins don’t fly. (r4 : penguin ⇝ ¬fly)

• Suppose we have penguin as a fact. So +∆penguin.
• Then we can derive +∆bird from r3 and +∆penguin

• Then we cannot derive +∂fly from r1 and +∆bird ; r4 prevents this.

Example: the Penguin (with a superiority relation)

1 Birds can fly. (r1 : bird ⇒ fly)

2 Penguins are birds. (r3 : penguin → bird)

3 Penguins don’t fly (r5 : penguin ⇒ ¬fly)

4 r5 > r1

• Suppose we have penguin as a fact. So +∆penguin.
• Then we can derive +∆bird from r3 and +∆penguin
• Then we derive +∂¬fly from r5 and +∆penguin; r1 conflicts, but is defeated.

Defeasible Reasoning over Facts and Norms 14

Another attempt at Non-monotonicity

Example: the Penguin (with a defeater)

1 Birds can fly. (r1 : bird ⇒ fly)

2 Penguins are birds. (r3 : penguin → bird)

3 Penguins don’t fly. (r4 : penguin ⇝ ¬fly)

• Suppose we have penguin as a fact. So +∆penguin.
• Then we can derive +∆bird from r3 and +∆penguin
• Then we cannot derive +∂fly from r1 and +∆bird ; r4 prevents this.

Example: the Penguin (with a superiority relation)

1 Birds can fly. (r1 : bird ⇒ fly)

2 Penguins are birds. (r3 : penguin → bird)

3 Penguins don’t fly (r5 : penguin ⇒ ¬fly)

4 r5 > r1

• Suppose we have penguin as a fact. So +∆penguin.
• Then we can derive +∆bird from r3 and +∆penguin
• Then we derive +∂¬fly from r5 and +∆penguin; r1 conflicts, but is defeated.

Defeasible Reasoning over Facts and Norms 14

Another attempt at Non-monotonicity

Example: the Penguin (with a defeater)

1 Birds can fly. (r1 : bird ⇒ fly)

2 Penguins are birds. (r3 : penguin → bird)

3 Penguins don’t fly. (r4 : penguin ⇝ ¬fly)

• Suppose we have penguin as a fact. So +∆penguin.
• Then we can derive +∆bird from r3 and +∆penguin
• Then we cannot derive +∂fly from r1 and +∆bird ; r4 prevents this.

Example: the Penguin (with a superiority relation)

1 Birds can fly. (r1 : bird ⇒ fly)

2 Penguins are birds. (r3 : penguin → bird)

3 Penguins don’t fly (r5 : penguin ⇒ ¬fly)

4 r5 > r1

• Suppose we have penguin as a fact. So +∆penguin.
• Then we can derive +∆bird from r3 and +∆penguin
• Then we derive +∂¬fly from r5 and +∆penguin; r1 conflicts, but is defeated.

Defeasible Reasoning over Facts and Norms 14

Another attempt at Non-monotonicity

Example: the Penguin (with a defeater)

1 Birds can fly. (r1 : bird ⇒ fly)

2 Penguins are birds. (r3 : penguin → bird)

3 Penguins don’t fly. (r4 : penguin ⇝ ¬fly)

• Suppose we have penguin as a fact. So +∆penguin.
• Then we can derive +∆bird from r3 and +∆penguin
• Then we cannot derive +∂fly from r1 and +∆bird ; r4 prevents this.

Example: the Penguin (with a superiority relation)

1 Birds can fly. (r1 : bird ⇒ fly)

2 Penguins are birds. (r3 : penguin → bird)

3 Penguins don’t fly (r5 : penguin ⇒ ¬fly)

4 r5 > r1

• Suppose we have penguin as a fact. So +∆penguin.
• Then we can derive +∆bird from r3 and +∆penguin
• Then we derive +∂¬fly from r5 and +∆penguin; r1 conflicts, but is defeated.

Defeasible Reasoning over Facts and Norms 14

Another attempt at Non-monotonicity

Example: the Penguin (with a defeater)

1 Birds can fly. (r1 : bird ⇒ fly)

2 Penguins are birds. (r3 : penguin → bird)

3 Penguins don’t fly. (r4 : penguin ⇝ ¬fly)

• Suppose we have penguin as a fact. So +∆penguin.
• Then we can derive +∆bird from r3 and +∆penguin
• Then we cannot derive +∂fly from r1 and +∆bird ; r4 prevents this.

Example: the Penguin (with a superiority relation)

1 Birds can fly. (r1 : bird ⇒ fly)

2 Penguins are birds. (r3 : penguin → bird)

3 Penguins don’t fly (r5 : penguin ⇒ ¬fly)

4 r5 > r1

• Suppose we have penguin as a fact. So +∆penguin.
• Then we can derive +∆bird from r3 and +∆penguin
• Then we derive +∂¬fly from r5 and +∆penguin; r1 conflicts, but is defeated.

Defeasible Reasoning over Facts and Norms 14

An Extension: Defeasible Deontic Logic

We can extend DL with deontic operators!

New Syntax

• Introduce modal literals: ModLit = {O(lit)|lit ∈ Lit}
• Introduce rule modalities: ↪→∗∈ {→∗,⇒∗,⇝∗}, ∗ ∈ {C,O}

• For any r : A(r) ↪→O N(r), N(r) ∈ ModLit

Translating Norms in DDL

• O(p|q) translates to q ⇒O p
• F(p|q) translates to q ⇒O ¬p
• Ps(p|q) translates to q ⇝O p
• C(x , y |c) translates to c, x →C y

Defeasible Reasoning over Facts and Norms 15

An Extension: Defeasible Deontic Logic

We can extend DL with deontic operators!

New Syntax

• Introduce modal literals: ModLit = {O(lit)|lit ∈ Lit}
• Introduce rule modalities: ↪→∗∈ {→∗,⇒∗,⇝∗}, ∗ ∈ {C,O}

• For any r : A(r) ↪→O N(r), N(r) ∈ ModLit

Translating Norms in DDL

• O(p|q) translates to q ⇒O p

• F(p|q) translates to q ⇒O ¬p
• Ps(p|q) translates to q ⇝O p
• C(x , y |c) translates to c, x →C y

Defeasible Reasoning over Facts and Norms 15

An Extension: Defeasible Deontic Logic

We can extend DL with deontic operators!

New Syntax

• Introduce modal literals: ModLit = {O(lit)|lit ∈ Lit}
• Introduce rule modalities: ↪→∗∈ {→∗,⇒∗,⇝∗}, ∗ ∈ {C,O}

• For any r : A(r) ↪→O N(r), N(r) ∈ ModLit

Translating Norms in DDL

• O(p|q) translates to q ⇒O p
• F(p|q) translates to q ⇒O ¬p

• Ps(p|q) translates to q ⇝O p
• C(x , y |c) translates to c, x →C y

Defeasible Reasoning over Facts and Norms 15

An Extension: Defeasible Deontic Logic

We can extend DL with deontic operators!

New Syntax

• Introduce modal literals: ModLit = {O(lit)|lit ∈ Lit}
• Introduce rule modalities: ↪→∗∈ {→∗,⇒∗,⇝∗}, ∗ ∈ {C,O}

• For any r : A(r) ↪→O N(r), N(r) ∈ ModLit

Translating Norms in DDL

• O(p|q) translates to q ⇒O p
• F(p|q) translates to q ⇒O ¬p
• Ps(p|q) translates to q ⇝O p

• C(x , y |c) translates to c, x →C y

Defeasible Reasoning over Facts and Norms 15

An Extension: Defeasible Deontic Logic

We can extend DL with deontic operators!

New Syntax

• Introduce modal literals: ModLit = {O(lit)|lit ∈ Lit}
• Introduce rule modalities: ↪→∗∈ {→∗,⇒∗,⇝∗}, ∗ ∈ {C,O}

• For any r : A(r) ↪→O N(r), N(r) ∈ ModLit

Translating Norms in DDL

• O(p|q) translates to q ⇒O p
• F(p|q) translates to q ⇒O ¬p
• Ps(p|q) translates to q ⇝O p
• C(x , y |c) translates to c, x →C y

Defeasible Reasoning over Facts and Norms 15

Reframing Compliance

DDL theory = Facts + Normative System

Interpreting Conclusions

• +∂Op means p is obligatory.
• +∂O¬p means p is forbidden.
• −∂O¬p means p is (weakly) permissible.
• +∂Cp means we can prove p is true.
• −∂Cp means we cannot prove p is true.

Violation in DDL

Suppose we have a DDL theory D representing a set of facts F and a normative
system. Then a violation is a literal lit such that:

D ⊢ +∂O lit , −∂C lit

Defeasible Reasoning over Facts and Norms 16

Reframing Compliance

DDL theory = Facts + Normative System

Interpreting Conclusions

• +∂Op means p is obligatory.

• +∂O¬p means p is forbidden.
• −∂O¬p means p is (weakly) permissible.
• +∂Cp means we can prove p is true.
• −∂Cp means we cannot prove p is true.

Violation in DDL

Suppose we have a DDL theory D representing a set of facts F and a normative
system. Then a violation is a literal lit such that:

D ⊢ +∂O lit , −∂C lit

Defeasible Reasoning over Facts and Norms 16

Reframing Compliance

DDL theory = Facts + Normative System

Interpreting Conclusions

• +∂Op means p is obligatory.
• +∂O¬p means p is forbidden.

• −∂O¬p means p is (weakly) permissible.
• +∂Cp means we can prove p is true.
• −∂Cp means we cannot prove p is true.

Violation in DDL

Suppose we have a DDL theory D representing a set of facts F and a normative
system. Then a violation is a literal lit such that:

D ⊢ +∂O lit , −∂C lit

Defeasible Reasoning over Facts and Norms 16

Reframing Compliance

DDL theory = Facts + Normative System

Interpreting Conclusions

• +∂Op means p is obligatory.
• +∂O¬p means p is forbidden.
• −∂O¬p means p is (weakly) permissible.

• +∂Cp means we can prove p is true.
• −∂Cp means we cannot prove p is true.

Violation in DDL

Suppose we have a DDL theory D representing a set of facts F and a normative
system. Then a violation is a literal lit such that:

D ⊢ +∂O lit , −∂C lit

Defeasible Reasoning over Facts and Norms 16

Reframing Compliance

DDL theory = Facts + Normative System

Interpreting Conclusions

• +∂Op means p is obligatory.
• +∂O¬p means p is forbidden.
• −∂O¬p means p is (weakly) permissible.
• +∂Cp means we can prove p is true.

• −∂Cp means we cannot prove p is true.

Violation in DDL

Suppose we have a DDL theory D representing a set of facts F and a normative
system. Then a violation is a literal lit such that:

D ⊢ +∂O lit , −∂C lit

Defeasible Reasoning over Facts and Norms 16

Reframing Compliance

DDL theory = Facts + Normative System

Interpreting Conclusions

• +∂Op means p is obligatory.
• +∂O¬p means p is forbidden.
• −∂O¬p means p is (weakly) permissible.
• +∂Cp means we can prove p is true.
• −∂Cp means we cannot prove p is true.

Violation in DDL

Suppose we have a DDL theory D representing a set of facts F and a normative
system. Then a violation is a literal lit such that:

D ⊢ +∂O lit , −∂C lit

Defeasible Reasoning over Facts and Norms 16

Reframing Compliance

DDL theory = Facts + Normative System

Interpreting Conclusions

• +∂Op means p is obligatory.
• +∂O¬p means p is forbidden.
• −∂O¬p means p is (weakly) permissible.
• +∂Cp means we can prove p is true.
• −∂Cp means we cannot prove p is true.

Violation in DDL

Suppose we have a DDL theory D representing a set of facts F and a normative
system. Then a violation is a literal lit such that:

D ⊢ +∂O lit , −∂C lit

Defeasible Reasoning over Facts and Norms 16

Example: a Normative System in DDL (pt 1)

A simple normative system...and a violation

• You are forbidden from eating cake. (r1 : ⇒O ¬cake)
• Eating carrot cake counts as eating cake. (r2 : carrot →C cake)

• Suppose it is a fact that you eat carrot cake, so we have +∆Ccarrot .
• With r2 we can derive +∆Ccake, from which we get +∂Ccake.
• If we have +∂Ccake, we cannot have +∂C¬cake; instead, we get −∂C¬cake.
• However, from r1 we get +∂O¬cake.
• There is a violation!

Defeasible Reasoning over Facts and Norms 17

Example: a Normative System in DDL (pt 1)

A simple normative system...and a violation

• You are forbidden from eating cake. (r1 : ⇒O ¬cake)
• Eating carrot cake counts as eating cake. (r2 : carrot →C cake)
• Suppose it is a fact that you eat carrot cake, so we have +∆Ccarrot .

• With r2 we can derive +∆Ccake, from which we get +∂Ccake.
• If we have +∂Ccake, we cannot have +∂C¬cake; instead, we get −∂C¬cake.
• However, from r1 we get +∂O¬cake.
• There is a violation!

Defeasible Reasoning over Facts and Norms 17

Example: a Normative System in DDL (pt 1)

A simple normative system...and a violation

• You are forbidden from eating cake. (r1 : ⇒O ¬cake)
• Eating carrot cake counts as eating cake. (r2 : carrot →C cake)
• Suppose it is a fact that you eat carrot cake, so we have +∆Ccarrot .
• With r2 we can derive +∆Ccake, from which we get +∂Ccake.

• If we have +∂Ccake, we cannot have +∂C¬cake; instead, we get −∂C¬cake.
• However, from r1 we get +∂O¬cake.
• There is a violation!

Defeasible Reasoning over Facts and Norms 17

Example: a Normative System in DDL (pt 1)

A simple normative system...and a violation

• You are forbidden from eating cake. (r1 : ⇒O ¬cake)
• Eating carrot cake counts as eating cake. (r2 : carrot →C cake)
• Suppose it is a fact that you eat carrot cake, so we have +∆Ccarrot .
• With r2 we can derive +∆Ccake, from which we get +∂Ccake.
• If we have +∂Ccake, we cannot have +∂C¬cake; instead, we get −∂C¬cake.

• However, from r1 we get +∂O¬cake.
• There is a violation!

Defeasible Reasoning over Facts and Norms 17

Example: a Normative System in DDL (pt 1)

A simple normative system...and a violation

• You are forbidden from eating cake. (r1 : ⇒O ¬cake)
• Eating carrot cake counts as eating cake. (r2 : carrot →C cake)
• Suppose it is a fact that you eat carrot cake, so we have +∆Ccarrot .
• With r2 we can derive +∆Ccake, from which we get +∂Ccake.
• If we have +∂Ccake, we cannot have +∂C¬cake; instead, we get −∂C¬cake.
• However, from r1 we get +∂O¬cake.

• There is a violation!

Defeasible Reasoning over Facts and Norms 17

Example: a Normative System in DDL (pt 1)

A simple normative system...and a violation

• You are forbidden from eating cake. (r1 : ⇒O ¬cake)
• Eating carrot cake counts as eating cake. (r2 : carrot →C cake)
• Suppose it is a fact that you eat carrot cake, so we have +∆Ccarrot .
• With r2 we can derive +∆Ccake, from which we get +∂Ccake.
• If we have +∂Ccake, we cannot have +∂C¬cake; instead, we get −∂C¬cake.
• However, from r1 we get +∂O¬cake.
• There is a violation!

Defeasible Reasoning over Facts and Norms 17

Example: a Normative System in DDL (pt 2)

Adding permission

• Take r1 and r2 as above.
• On Tuesdays, you are permitted to eat cake. (r3 : tuesday ⇝O cake)

• As above, if we take carrot as a fact, we can derive −∂C¬cake.
• However, if we also have the fact tuesday , r3 prevents us from deriving +∂O¬cake

from r1.
• No violation!

Conflicting rules

• Take r1 and r2 as above.
• If it is a gift, you ought to eat the cake. (r4 : gift ⇒O cake)
• Suppose gift is a fact. If we take r4 > r1, then we derive +∂Ocake instead of

+∂O¬cake.
• If we have carrot as a fact, we can derive +∆Ccake so we cannot derive

−∂Ccake.
• No violation!

Defeasible Reasoning over Facts and Norms 18

Example: a Normative System in DDL (pt 2)

Adding permission

• Take r1 and r2 as above.
• On Tuesdays, you are permitted to eat cake. (r3 : tuesday ⇝O cake)
• As above, if we take carrot as a fact, we can derive −∂C¬cake.

• However, if we also have the fact tuesday , r3 prevents us from deriving +∂O¬cake
from r1.

• No violation!

Conflicting rules

• Take r1 and r2 as above.
• If it is a gift, you ought to eat the cake. (r4 : gift ⇒O cake)
• Suppose gift is a fact. If we take r4 > r1, then we derive +∂Ocake instead of

+∂O¬cake.
• If we have carrot as a fact, we can derive +∆Ccake so we cannot derive

−∂Ccake.
• No violation!

Defeasible Reasoning over Facts and Norms 18

Example: a Normative System in DDL (pt 2)

Adding permission

• Take r1 and r2 as above.
• On Tuesdays, you are permitted to eat cake. (r3 : tuesday ⇝O cake)
• As above, if we take carrot as a fact, we can derive −∂C¬cake.
• However, if we also have the fact tuesday , r3 prevents us from deriving +∂O¬cake

from r1.
• No violation!

Conflicting rules

• Take r1 and r2 as above.
• If it is a gift, you ought to eat the cake. (r4 : gift ⇒O cake)
• Suppose gift is a fact. If we take r4 > r1, then we derive +∂Ocake instead of

+∂O¬cake.
• If we have carrot as a fact, we can derive +∆Ccake so we cannot derive

−∂Ccake.
• No violation!

Defeasible Reasoning over Facts and Norms 18

Example: a Normative System in DDL (pt 2)

Adding permission

• Take r1 and r2 as above.
• On Tuesdays, you are permitted to eat cake. (r3 : tuesday ⇝O cake)
• As above, if we take carrot as a fact, we can derive −∂C¬cake.
• However, if we also have the fact tuesday , r3 prevents us from deriving +∂O¬cake

from r1.
• No violation!

Conflicting rules

• Take r1 and r2 as above.
• If it is a gift, you ought to eat the cake. (r4 : gift ⇒O cake)

• Suppose gift is a fact. If we take r4 > r1, then we derive +∂Ocake instead of
+∂O¬cake.

• If we have carrot as a fact, we can derive +∆Ccake so we cannot derive
−∂Ccake.

• No violation!

Defeasible Reasoning over Facts and Norms 18

Example: a Normative System in DDL (pt 2)

Adding permission

• Take r1 and r2 as above.
• On Tuesdays, you are permitted to eat cake. (r3 : tuesday ⇝O cake)
• As above, if we take carrot as a fact, we can derive −∂C¬cake.
• However, if we also have the fact tuesday , r3 prevents us from deriving +∂O¬cake

from r1.
• No violation!

Conflicting rules

• Take r1 and r2 as above.
• If it is a gift, you ought to eat the cake. (r4 : gift ⇒O cake)
• Suppose gift is a fact. If we take r4 > r1, then we derive +∂Ocake instead of

+∂O¬cake.

• If we have carrot as a fact, we can derive +∆Ccake so we cannot derive
−∂Ccake.

• No violation!

Defeasible Reasoning over Facts and Norms 18

Example: a Normative System in DDL (pt 2)

Adding permission

• Take r1 and r2 as above.
• On Tuesdays, you are permitted to eat cake. (r3 : tuesday ⇝O cake)
• As above, if we take carrot as a fact, we can derive −∂C¬cake.
• However, if we also have the fact tuesday , r3 prevents us from deriving +∂O¬cake

from r1.
• No violation!

Conflicting rules

• Take r1 and r2 as above.
• If it is a gift, you ought to eat the cake. (r4 : gift ⇒O cake)
• Suppose gift is a fact. If we take r4 > r1, then we derive +∂Ocake instead of

+∂O¬cake.
• If we have carrot as a fact, we can derive +∆Ccake so we cannot derive

−∂Ccake.
• No violation!

Defeasible Reasoning over Facts and Norms 18

BRISE: Regulation 6817e_5_0

German

Für das gesamte Plangebiet wird bestimmt: Sofern nichts anderes bestimmt ist, sind
Flachdächer von Gebäuden ab einer bebauten Fläche von 30 m2, soweit sie nicht als
begehbare Terrassen ausgebildet werden, nach dem Stand der technischen
Wissenschaften zu begrünen.

English

The following is stipulated for the entire plan area: Unless otherwise stipulated, flat
roofs of buildings with a built-up area of 30 m2 or more, unless they are designed as
accessible terraces, are to be greened in accordance with the state of the art.

Defeasible Reasoning over Facts and Norms 19

BRISE: Regulation 6817e_5_0

Extracted Concepts

1 BegruenungDach [content] [greened roof]

2 Dachart(Flachdach) [condition] [roof type: flat roof]

3 Dachart(begehbare Terrasse) [conditionException] [roof type: accessible terrace]

4 GesamtePlangebiet [condition] [entire plan area]

5 BebauteFlaecheMin(30 m2) [condition] [built-up area minimum]

DDL Formalization

r1 : GesamtePlangebiet ,BebauteFlaecheMin(30m2),Dachart(Flachdach)

⇒O BegruenungDach

r2 : GesamtePlangebiet ,BebauteFlaecheMin(30m2),Dachart(begehbareTerrasse)

⇝O ¬BegruenungDach

r3 : Dachart(begehbareTerrasse) →C Dachart(Flachdach)

Defeasible Reasoning over Facts and Norms 20

BRISE: Regulation 6817e_5_0

Extracted Concepts

1 BegruenungDach [content] [greened roof]

2 Dachart(Flachdach) [condition] [roof type: flat roof]

3 Dachart(begehbare Terrasse) [conditionException] [roof type: accessible terrace]

4 GesamtePlangebiet [condition] [entire plan area]

5 BebauteFlaecheMin(30 m2) [condition] [built-up area minimum]

DDL Formalization

r1 : GesamtePlangebiet ,BebauteFlaecheMin(30m2),Dachart(Flachdach)

⇒O BegruenungDach

r2 : GesamtePlangebiet ,BebauteFlaecheMin(30m2),Dachart(begehbareTerrasse)

⇝O ¬BegruenungDach

r3 : Dachart(begehbareTerrasse) →C Dachart(Flachdach)

Defeasible Reasoning over Facts and Norms 20

BRISE: Regulation 6817e_5_0

Extracted Concepts

1 BegruenungDach [content] [greened roof]

2 Dachart(Flachdach) [condition] [roof type: flat roof]

3 Dachart(begehbare Terrasse) [conditionException] [roof type: accessible terrace]

4 GesamtePlangebiet [condition] [entire plan area]

5 BebauteFlaecheMin(30 m2) [condition] [built-up area minimum]

DDL Formalization

r1 : GesamtePlangebiet ,BebauteFlaecheMin(30m2),Dachart(Flachdach)

⇒O BegruenungDach

r2 : GesamtePlangebiet ,BebauteFlaecheMin(30m2),Dachart(begehbareTerrasse)

⇝O ¬BegruenungDach

r3 : Dachart(begehbareTerrasse) →C Dachart(Flachdach)

Defeasible Reasoning over Facts and Norms 20

BRISE: Regulation 6817e_5_0

Extracted Concepts

1 BegruenungDach [content] [greened roof]

2 Dachart(Flachdach) [condition] [roof type: flat roof]

3 Dachart(begehbare Terrasse) [conditionException] [roof type: accessible terrace]

4 GesamtePlangebiet [condition] [entire plan area]

5 BebauteFlaecheMin(30 m2) [condition] [built-up area minimum]

DDL Formalization

r1 : GesamtePlangebiet ,BebauteFlaecheMin(30m2),Dachart(Flachdach)

⇒O BegruenungDach

r2 : GesamtePlangebiet ,BebauteFlaecheMin(30m2),Dachart(begehbareTerrasse)

⇝O ¬BegruenungDach

r3 : Dachart(begehbareTerrasse) →C Dachart(Flachdach)

Defeasible Reasoning over Facts and Norms 20

BRISE: Regulation 6817e_5_0

Example 1: Facts

• GesamtePlangebiet
• BebauteFlaecheMin(30 m2)
• Dachart(Flachdach)
• BegruenungDach

Example 1: Conclusions

• Given the above facts, we get +∆CGesamtePlangebiet ,
+∆CBebauteFlaecheMin(30m2), +∆CDachart(Flachdach),
+∆CBegruenungDach.

• Then from r1 we can derive +∂OBegruenungDach.
• Since we have +∆CBegruenungDach, there is no violation.

Defeasible Reasoning over Facts and Norms 21

BRISE: Regulation 6817e_5_0

Example 1: Facts

• GesamtePlangebiet
• BebauteFlaecheMin(30 m2)
• Dachart(Flachdach)
• BegruenungDach

Example 1: Conclusions

• Given the above facts, we get +∆CGesamtePlangebiet ,
+∆CBebauteFlaecheMin(30m2), +∆CDachart(Flachdach),
+∆CBegruenungDach.

• Then from r1 we can derive +∂OBegruenungDach.
• Since we have +∆CBegruenungDach, there is no violation.

Defeasible Reasoning over Facts and Norms 21

BRISE: Regulation 6817e_5_0

Example 1: Facts

• GesamtePlangebiet
• BebauteFlaecheMin(30 m2)
• Dachart(Flachdach)
• BegruenungDach

Example 1: Conclusions

• Given the above facts, we get +∆CGesamtePlangebiet ,
+∆CBebauteFlaecheMin(30m2), +∆CDachart(Flachdach),
+∆CBegruenungDach.

• Then from r1 we can derive +∂OBegruenungDach.
• Since we have +∆CBegruenungDach, there is no violation.

Defeasible Reasoning over Facts and Norms 21

BRISE: Regulation 6817e_5_0

Example 2: Facts

• GesamtePlangebiet
• BebauteFlaecheMin(30 m2)
• Dachart(begehbare Terrasse)

Example 2: Conclusions

• Given the above facts, we get +∆CGesamtePlangebiet ,
+∆CBebauteFlaecheMin(30m2), +∆CDachart(begehbareTerrasse).

• From r3 and +∆CDachart(begehbareTerrasse), we can derive
+∆CDachart(Flachdach)

• So both r1 and r2 are triggered; r2 defeats r1 and we cannot derive
+∂OBegruenungDach.

• There are no obligations to violate.

Defeasible Reasoning over Facts and Norms 22

BRISE: Regulation 6817e_5_0

Example 2: Facts

• GesamtePlangebiet
• BebauteFlaecheMin(30 m2)
• Dachart(begehbare Terrasse)

Example 2: Conclusions

• Given the above facts, we get +∆CGesamtePlangebiet ,
+∆CBebauteFlaecheMin(30m2), +∆CDachart(begehbareTerrasse).

• From r3 and +∆CDachart(begehbareTerrasse), we can derive
+∆CDachart(Flachdach)

• So both r1 and r2 are triggered; r2 defeats r1 and we cannot derive
+∂OBegruenungDach.

• There are no obligations to violate.

Defeasible Reasoning over Facts and Norms 22

BRISE: Regulation 6817e_5_0

Example 2: Facts

• GesamtePlangebiet
• BebauteFlaecheMin(30 m2)
• Dachart(begehbare Terrasse)

Example 2: Conclusions

• Given the above facts, we get +∆CGesamtePlangebiet ,
+∆CBebauteFlaecheMin(30m2), +∆CDachart(begehbareTerrasse).

• From r3 and +∆CDachart(begehbareTerrasse), we can derive
+∆CDachart(Flachdach)

• So both r1 and r2 are triggered; r2 defeats r1 and we cannot derive
+∂OBegruenungDach.

• There are no obligations to violate.

Defeasible Reasoning over Facts and Norms 22

BRISE: Regulation 6817e_5_0

Example 2: Facts

• GesamtePlangebiet
• BebauteFlaecheMin(30 m2)
• Dachart(begehbare Terrasse)

Example 2: Conclusions

• Given the above facts, we get +∆CGesamtePlangebiet ,
+∆CBebauteFlaecheMin(30m2), +∆CDachart(begehbareTerrasse).

• From r3 and +∆CDachart(begehbareTerrasse), we can derive
+∆CDachart(Flachdach)

• So both r1 and r2 are triggered; r2 defeats r1 and we cannot derive
+∂OBegruenungDach.

• There are no obligations to violate.

Defeasible Reasoning over Facts and Norms 22

BRISE: Regulation 6817e_5_0

Example 2: Facts

• GesamtePlangebiet
• BebauteFlaecheMin(30 m2)
• Dachart(begehbare Terrasse)

Example 2: Conclusions

• Given the above facts, we get +∆CGesamtePlangebiet ,
+∆CBebauteFlaecheMin(30m2), +∆CDachart(begehbareTerrasse).

• From r3 and +∆CDachart(begehbareTerrasse), we can derive
+∆CDachart(Flachdach)

• So both r1 and r2 are triggered; r2 defeats r1 and we cannot derive
+∂OBegruenungDach.

• There are no obligations to violate.

Defeasible Reasoning over Facts and Norms 22

To Take Home with You

Why logic?

• Logic allows us to model arbitrarily complex constraints.

• When we use a theorem prover to check compliance, it gives us a sort of
“certificate” of the derived results.

• From a set of conclusions, facts, and rules we can always reconstruct the
reasoning that led to those conclusions.

• Representing ideal behaviour through rules helps with explainability and
transparency.

Defeasible Reasoning over Facts and Norms 23

To Take Home with You

Why logic?

• Logic allows us to model arbitrarily complex constraints.

• When we use a theorem prover to check compliance, it gives us a sort of
“certificate” of the derived results.

• From a set of conclusions, facts, and rules we can always reconstruct the
reasoning that led to those conclusions.

• Representing ideal behaviour through rules helps with explainability and
transparency.

Defeasible Reasoning over Facts and Norms 23

To Take Home with You

Why logic?

• Logic allows us to model arbitrarily complex constraints.

• When we use a theorem prover to check compliance, it gives us a sort of
“certificate” of the derived results.

• From a set of conclusions, facts, and rules we can always reconstruct the
reasoning that led to those conclusions.

• Representing ideal behaviour through rules helps with explainability and
transparency.

Defeasible Reasoning over Facts and Norms 23

To Take Home with You

Why logic?

• Logic allows us to model arbitrarily complex constraints.

• When we use a theorem prover to check compliance, it gives us a sort of
“certificate” of the derived results.

• From a set of conclusions, facts, and rules we can always reconstruct the
reasoning that led to those conclusions.

• Representing ideal behaviour through rules helps with explainability and
transparency.

Defeasible Reasoning over Facts and Norms 23

To Take Home with You

Why logic?

• Logic allows us to model arbitrarily complex constraints.

• When we use a theorem prover to check compliance, it gives us a sort of
“certificate” of the derived results.

• From a set of conclusions, facts, and rules we can always reconstruct the
reasoning that led to those conclusions.

• Representing ideal behaviour through rules helps with explainability and
transparency.

Defeasible Reasoning over Facts and Norms 23

Literature I

References

[1] D. Nute, “Defeasible logic,” in Handbook of Logic in Artificial Intelligence and Logic
Programming: Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning,
vol. 3, Oxford University Press, 1993.

[2] M. J. Maher, A. Rock, G. Antoniou, D. Billington, and T. Miller, “Efficient defeasible
reasoning systems,” International Journal on Artificial Intelligence Tools, vol. 10,
no. 04, pp. 483–501, 2001.

[3] G. Governatori and A. Rotolo, “BIO logical agents: Norms, beliefs, intentions in
defeasible logic,” Journal of Autonomous Agents and Multi Agent Systems, vol. 17,
no. 1, pp. 36–69, 2008.

[4] G. Governatori, “Practical normative reasoning with defeasible deontic logic,” in
Reasoning Web International Summer School, Springer, 2018, pp. 1–25.

Defeasible Reasoning over Facts and Norms 24

	References

