

Defeasible Reasoning over Facts and Norms

Emery Neufeld

Norms

We can represent norms explicitly or implicitly.

Norms

We can represent norms explicitly or implicitly.

• Represent norms explicitly as rules.

Norms

We can represent norms explicitly or implicitly.

- Represent norms explicitly as rules.
- E.g., "*p* is obligatory"

Norms

We can represent norms explicitly or implicitly.

Represent norms explicitly as rules.

 Represent norms implicitly as descriptions.

• E.g., "p is obligatory"

Norms

We can represent norms explicitly or implicitly.

- Represent norms explicitly as rules.
- E.g., "*p* is obligatory"

- Represent norms implicitly as descriptions.
- E.g., "always p"

Norms

We can represent norms explicitly or implicitly.

- Represent norms explicitly as rules.
- E.g., "p is obligatory"

- Represent norms implicitly as descriptions.
- E.g., "always p"

Norms can be ...

Norms

We can represent norms explicitly or implicitly.

- Represent norms explicitly as rules.
- E.g., "p is obligatory"

- Represent norms implicitly as descriptions.
- E.g., "always p"

Norms can be...

Norms

We can represent norms explicitly or implicitly.

- Represent norms explicitly as rules.
- E.g., "p is obligatory"

- Represent norms implicitly as descriptions.
- E.g., "always p"

Norms can be ...

Norms

We can represent norms explicitly or implicitly.

- Represent norms explicitly as rules.
- E.g., "p is obligatory"

- Represent norms implicitly as descriptions.
- E.g., "always p"

Norms can be...

Norms can be...

Norms can be...

Regulative Norms

- Obligations O(p|q)
 - "On Sunday, you ought to bake a cake."

Norms can be...

Regulative Norms

- Obligations O(p|q)
 - "On Sunday, you ought to bake a cake."
- Prohibitions $\mathbf{F}(p|q) \equiv \mathbf{O}(\neg p|q)$
 - "You are forbidden from eating cake."

Norms can be...

Regulative Norms

- Obligations O(p|q)
 - "On Sunday, you ought to bake a cake."
- Prohibitions $\mathbf{F}(p|q) \equiv \mathbf{O}(\neg p|q)$
 - "You are forbidden from eating cake."
- (Weak) Permissions $\mathbf{P}_{w}(p|q) \equiv \neg \mathbf{O}(\neg p|q)$
 - "On Tuesday, you are permitted to eat carrot cake."

Norms can be...

Regulative Norms

- Obligations O(p|q)
 - "On Sunday, you ought to bake a cake."
- Prohibitions $\mathbf{F}(p|q) \equiv \mathbf{O}(\neg p|q)$
 - "You are forbidden from eating cake."
- (Weak) Permissions $\mathbf{P}_{w}(p|q) \equiv \neg \mathbf{O}(\neg p|q)$
 - "On Tuesday, you are permitted to eat carrot cake."
 - Conflict!

Norms can be...

Regulative Norms

- Obligations O(p|q)
 - "On Sunday, you ought to bake a cake."
- Prohibitions $\mathbf{F}(p|q) \equiv \mathbf{O}(\neg p|q)$
 - "You are forbidden from eating cake."
- (Weak) Permissions $\mathbf{P}_{w}(p|q) \equiv \neg \mathbf{O}(\neg p|q)$
 - "On Tuesday, you are permitted to eat carrot cake."
 - Conflict!
- (Strong) Permissions P_s(p)
 - "On Tuesday, you are permitted to eat carrot cake."
 - No conflict :)

Norms can be...

Regulative Norms

Regulative norms can be:

- Obligations O(p|q)
 - "On Sunday, you ought to bake a cake."
- Prohibitions $\mathbf{F}(p|q) \equiv \mathbf{O}(\neg p|q)$
 - "You are forbidden from eating cake."
- (Weak) Permissions $\mathbf{P}_{w}(p|q) \equiv \neg \mathbf{O}(\neg p|q)$
 - "On Tuesday, you are permitted to eat carrot cake."
 - Conflict!
- (Strong) Permissions P_s(p)
 - "On Tuesday, you are permitted to eat carrot cake."
 - No conflict :)

Constitutive Norms

Constitutive norms are:

- "in context C, X counts as Y"
 - $\mathbf{C}(X, Y|C)$
 - Used to define new concepts.
 - "Eating carrot cake counts as eating cake".

Normative Systems

Regulative Norms + Constitutive norms = Normative System

Normative Systems

Regulative Norms + Constitutive norms = Normative System

Normative System Example

- You are forbidden from eating cake: F(cake|⊤)
- You are permitted to eat carrot cake on Tuesday: **P**(*carrot*|*tuesday*)
- Eating carrot cake counts as eating cake: C(carrot, cake | ⊤)

Normative Systems

Regulative Norms + Constitutive norms = Normative System

Normative System Example

- You are forbidden from eating cake: F(cake|⊤)
- You are permitted to eat carrot cake on Tuesday: **P**(*carrot*|*tuesday*)
- Eating carrot cake counts as eating cake: C(carrot, cake|⊤)
- Correct conclusion: you can only eat (carrot) cake on Tuesdays.

Compliance

Factual Detachment

$$\mathbf{O}(\rho|q) \wedge q \implies \mathbf{O}(\rho)$$

Compliance to Obligations

- Compliance := not violated
- An obligation **O**(*p*) is violated when **O**(*p*) is true but *p* is not.

Compliance

Factual Detachment

 $\mathbf{O}(p|q) \land q \implies \mathbf{O}(p)$

Compliance to Obligations

- Compliance := not violated
- An obligation O(p) is violated when
 O(p) is true but p is not.

Compliance to Normative Systems

- Compliance := no violations.
- Violation of normative system: for some p, O(p) is true but p is not.

Compliance

Factual Detachment

 $\mathbf{O}(p|q) \wedge q \implies \mathbf{O}(p)$

Compliance to Obligations

- Compliance := not violated
- An obligation O(p) is violated when
 O(p) is true but p is not.

Compliance to Normative Systems

- Compliance := no violations.
- Violation of normative system: for some p, O(p) is true but p is not.

Permissions cannot be violated!

Strong Permissions

- Strong Permissions
 - Act as **exceptions** to obligations or prohibitions.

- Strong Permissions
 - Act as exceptions to obligations or prohibitions.
 - Have no other function; cannot constrain, cannot be violated.

- Strong Permissions
 - Act as **exceptions** to obligations or prohibitions.
 - Have no other function; cannot constrain, cannot be violated.
- Conflict and Priorities

- Strong Permissions
 - Act as exceptions to obligations or prohibitions.
 - Have no other function; cannot constrain, cannot be violated.
- Conflict and Priorities
 - "When driving, you ought not swerve into another lane."

- Strong Permissions
 - Act as **exceptions** to obligations or prohibitions.
 - Have no other function; cannot constrain, cannot be violated.
- Conflict and Priorities
 - "When driving, you ought not swerve into another lane."
 - "If it is to avoid a collision, you ought to swerve into another lane."

- Strong Permissions
 - Act as **exceptions** to obligations or prohibitions.
 - Have no other function; cannot constrain, cannot be violated.
- Conflict and Priorities
 - "When driving, you ought not swerve into another lane."
 - "If it is to avoid a collision, you ought to swerve into another lane."
- Normative Deadlock
 - · What happens when compliance is not possible?

- Strong Permissions
 - Act as **exceptions** to obligations or prohibitions.
 - Have no other function; cannot constrain, cannot be violated.
- Conflict and Priorities
 - "When driving, you ought not swerve into another lane."
 - "If it is to avoid a collision, you ought to swerve into another lane."
- Normative Deadlock
 - What happens when compliance is not possible?
 - E.g., contrary-to-duty obligations:
 - "You ought not kill."
 - "If you kill, you ought to kill gently."

Definition

$\Gamma_1 \vdash \phi \implies \Gamma_1 \cup \Gamma_2 \vdash \phi$

Definition

$\Gamma_1 \vdash \phi \implies \Gamma_1 \cup \Gamma_2 \vdash \phi$

- Birds can fly. (*bird* \rightarrow *fly*)
- Sparrows are birds. (*sparrow* \rightarrow *bird*)

Definition

$\Gamma_1 \vdash \phi \implies \Gamma_1 \cup \Gamma_2 \vdash \phi$

- Birds can fly. (*bird* \rightarrow *fly*)
- Sparrows are birds. (*sparrow* \rightarrow *bird*)
- {bird \rightarrow fly, sparrow \rightarrow bird} \vdash sparrow \rightarrow fly

Definition

$\Gamma_1 \vdash \phi \implies \Gamma_1 \cup \Gamma_2 \vdash \phi$

- Birds can fly. (*bird* \rightarrow *fly*)
- Sparrows are birds. (sparrow → bird)
- {bird \rightarrow fly, sparrow \rightarrow bird} \vdash sparrow \rightarrow fly
- Add: fish cannot fly. {bird \rightarrow fly, sparrow \rightarrow bird} \cup {fish $\rightarrow \neg$ fly}

Definition

$\Gamma_1 \vdash \phi \implies \Gamma_1 \cup \Gamma_2 \vdash \phi$

- Birds can fly. (*bird* \rightarrow *fly*)
- Sparrows are birds. (sparrow → bird)
- {bird \rightarrow fly, sparrow \rightarrow bird} \vdash sparrow \rightarrow fly
- Add: fish cannot fly. {bird → fly, sparrow → bird} ∪ {fish → ¬fly}⊢ sparrow → fly
Why Non-monotonicity?

Example

- **1** Birds can fly (*bird* \rightarrow *fly*)
- 2 Sparrows are birds (*sparrow* \rightarrow *bird*)
- We can derive: sparrows can fly $(sparrow \rightarrow fly)$

Why Non-monotonicity?

Example

- **1** Birds can fly (*bird* \rightarrow *fly*)
- 2 Sparrows are birds (*sparrow* \rightarrow *bird*)
- We can derive: sparrows can fly $(sparrow \rightarrow fly)$

- **1** Birds can fly. (*bird* \rightarrow *fly*)
- **2** Penguins are birds. (*penguin* \rightarrow *bird*)

Why Non-monotonicity?

Example

- **1** Birds can fly (*bird* \rightarrow *fly*)
- 2 Sparrows are birds (*sparrow* \rightarrow *bird*)
- We can derive: sparrows can fly $(sparrow \rightarrow fly)$

- **1** Birds can fly. (*bird* \rightarrow *fly*)
- **2** Penguins are birds. (*penguin* \rightarrow *bird*)
- We can derive: penguins can fly??? (penguin \rightarrow fly)

Non-monotonicity

Example, continued...

- **1** Birds can fly (*bird* \rightarrow *fly*)
- 2 Penguins are birds (penguin \rightarrow bird)

Non-monotonicity

Example, continued...

- **1** Birds can fly (*bird* \rightarrow *fly*)
- **2** Penguins are birds (*penguin* \rightarrow *bird*)
- **3** Penguins cannot fly (penguin $\rightarrow \neg fly$)

Non-monotonicity

Example, continued...

- **1** Birds can fly (*bird* \rightarrow *fly*)
- **2** Penguins are birds (*penguin* \rightarrow *bird*)
- **3** Penguins cannot fly (penguin $\rightarrow \neg fly$)
- Is this necessarily a contradiction?

Literals

AP := atomic propositions

Rules

Literals

AP := atomic propositions

$$r: A(r) \hookrightarrow N(r)$$

- $A(r) = \{a_1, ..., a_n\} \in 2^{Lit}$ is an antecedent.
- $N(r) \in Lit$ is a consequent.

Rules

Literals

AP := atomic propositions

$$r: A(r) \hookrightarrow N(r)$$

- $A(r) = \{a_1, ..., a_n\} \in 2^{Lit}$ is an antecedent.
- $N(r) \in Lit$ is a consequent.

•
$$\hookrightarrow \in \{ \rightarrow$$

Rules

Literals

AP := atomic propositions

$$r: A(r) \hookrightarrow N(r)$$

- $A(r) = \{a_1, ..., a_n\} \in 2^{Lit}$ is an antecedent.
- $N(r) \in Lit$ is a consequent.

•
$$\hookrightarrow \in \{ \rightarrow , \Rightarrow$$

Rules

Literals

AP := atomic propositions

$$r: A(r) \hookrightarrow N(r)$$

- $A(r) = \{a_1, ..., a_n\} \in 2^{Lit}$ is an antecedent.
- $N(r) \in Lit$ is a consequent.

•
$$\hookrightarrow \in \{ \rightarrow, \Rightarrow, \rightsquigarrow \}$$

Rules

Literals

AP := atomic propositions

 $Lit := AP \cup \{\neg p \mid p \in AP\}$

$$r: A(r) \hookrightarrow N(r)$$

- $A(r) = \{a_1, ..., a_n\} \in 2^{Lit}$ is an antecedent.
- $N(r) \in Lit$ is a consequent.

•
$$\hookrightarrow \in \{ \rightarrow, \Rightarrow, \rightsquigarrow \}$$

Defeasible Theories

A defeasible theory is a tuple:

 $\langle F, R, > \rangle$

where $F \subset Lit$ is a set of facts, R is a set of rules, and > is a superiority relation over rules.

Rules

Literals

AP := atomic propositions

 $Lit := AP \cup \{\neg p \mid p \in AP\}$

$$r: A(r) \hookrightarrow N(r)$$

- $A(r) = \{a_1, ..., a_n\} \in 2^{Lit}$ is an antecedent.
- $N(r) \in Lit$ is a consequent.

•
$$\hookrightarrow \in \{ \rightarrow, \Rightarrow, \rightsquigarrow \}$$

Defeasible Theories

A defeasible theory is a tuple:

 $\langle F, R, \rangle$

where $F \subset Lit$ is a set of facts, R is a set of rules, and > is a superiority relation over rules.

From a defeasible theory, we can derive **conclusions**.

Defeasible Logic (DL): Definite Conclusions

Derived recursively:

Definite Provability

Given a defeasible theory *D*, if $D \vdash +\Delta p$, then either:

- p is a fact ($p \in F$), or
- 2 There is a strict rule r such that:
 - 1 N(r) = p2 and for every $a_i \in A(r), D \vdash +\Delta a_i$.

Defeasible Logic (DL): Definite Conclusions

Derived recursively:

Definite Provability

Given a defeasible theory *D*, if $D \vdash +\Delta p$, then either:

- **1** p is a fact ($p \in F$), or
- 2 There is a strict rule r such that:
 - 1 N(r) = p2 and for every $a_i \in A(r)$, $D \vdash +\Delta a_i$.

Definite Refutability

Given a defeasible theory *D*, if $D \vdash -\Delta p$, then:

- **1** p is not a fact ($p \notin F$), and
- **2** For all strict rules *r* such that N(r) = p, it is the case that $\exists a_i \in A(r)$ such that $D \vdash -\Delta a_i$.

Can be computed in linear time!

Defeasible Logic (DL): Defeasible Conclusions (pt 1)

Again, derived recursively:

Defeasible Provability

Given a defeasible theory *D*, If $D \vdash +\partial p$, either $D \vdash +\Delta p$ or: • There is a strict or defeasible rule *r* such that: • N(r) = p and • for every $a_i \in A(r)$, $D \vdash +\partial a_i$, and • $D \vdash -\Delta \neg p$, and • For all rules *r'* such that $N(r') = \neg p$, either: • there is an $a_i \in A(r')$ such that $D \vdash -\partial a_i$, or • There is a strict or defeasible rule *r''* such that: • N(r') = p, • for all $a_i \in A(r'')$, $D \vdash +\partial a_i$, and • r'' > r'.

Defeasible Logic (DL): Defeasible Conclusions (pt 2)

Defeasible Refutability

Given a defeasible theory *D*, If $D \vdash -\partial p$, $D \vdash -\Delta p$ and:

- For all strict and defeasible rules *r* such that N(r) = p there is $a_i \in A(r)$ such that $D \vdash -\partial a_i$, or
- $2 + \Delta \neg p$, or
- **3** There is a rule r' such that:

Can be computed in linear time!

- **1** Birds can fly. $(r_1 : bird \Rightarrow fly)$
- **2** Sparrows are birds. (r_2 : sparrow \rightarrow bird)

- **1** Birds can fly. $(r_1 : bird \Rightarrow fly)$
- **2** Sparrows are birds. (r_2 : sparrow \rightarrow bird)
- Suppose we have *sparrow* as a fact. So $+\Delta$ *sparrow*.

- **1** Birds can fly. $(r_1 : bird \Rightarrow fly)$
- **2** Sparrows are birds. (r_2 : sparrow \rightarrow bird)
- Suppose we have *sparrow* as a fact. So $+\Delta$ *sparrow*.
- Then we can derive $+\Delta bird$ from $+\Delta sparrow$ and r_2 .

- Birds can fly. $(r_1 : bird \Rightarrow fly)$
- **2** Sparrows are birds. (r_2 : sparrow \rightarrow bird)
- Suppose we have *sparrow* as a fact. So $+\Delta$ *sparrow*.
- Then we can derive $+\Delta bird$ from $+\Delta sparrow$ and r_2 .
- This means we can derive $+\partial fly$ from $+\Delta bird$ and r_1 .

Example: the Penguin (with a defeater)

1 Birds can fly. $(r_1 : bird \Rightarrow fly)$

Example: the Penguin (with a defeater)

- **1** Birds can fly. $(r_1 : bird \Rightarrow fly)$
- **2** Penguins are birds. (r_3 : penguin \rightarrow bird)

Example: the Penguin (with a defeater)

1 Birds can fly. $(r_1 : bird \Rightarrow fly)$

- **2** Penguins are birds. (r_3 : penguin \rightarrow bird)
- **3** Penguins don't fly. (r_4 : penguin $\rightsquigarrow \neg fly$)

Example: the Penguin (with a defeater)

- **1** Birds can fly. $(r_1 : bird \Rightarrow fly)$
- **2** Penguins are birds. (r_3 : penguin \rightarrow bird)
- **3** Penguins don't fly. (r_4 : penguin $\rightsquigarrow \neg fly$)
- Suppose we have *penguin* as a fact. So $+\Delta$ *penguin*.
- Then we can derive $+\Delta bird$ from r_3 and $+\Delta penguin$

Example: the Penguin (with a defeater)

- **1** Birds can fly. $(r_1 : bird \Rightarrow fly)$
- **2** Penguins are birds. (r_3 : penguin \rightarrow bird)
- **3** Penguins don't fly. (r_4 : penguin $\rightsquigarrow \neg fly$)
- Suppose we have *penguin* as a fact. So $+\Delta$ *penguin*.
- Then we can derive $+\Delta bird$ from r_3 and $+\Delta penguin$
- Then we **cannot** derive $+\partial fly$ from r_1 and $+\Delta bird$; r_4 prevents this.

Example: the Penguin (with a defeater)

- **1** Birds can fly. $(r_1 : bird \Rightarrow fly)$
- **2** Penguins are birds. (r_3 : penguin \rightarrow bird)
- **3** Penguins don't fly. (r_4 : penguin $\rightsquigarrow \neg fly$)
- Suppose we have *penguin* as a fact. So $+\Delta$ *penguin*.
- Then we can derive $+\Delta bird$ from r_3 and $+\Delta penguin$
- Then we **cannot** derive $+\partial fly$ from r_1 and $+\Delta bird$; r_4 prevents this.

Example: the Penguin (with a superiority relation)

- **1** Birds can fly. $(r_1 : bird \Rightarrow fly)$
- **2** Penguins are birds. (r_3 : penguin \rightarrow bird)

Example: the Penguin (with a defeater)

- **1** Birds can fly. $(r_1 : bird \Rightarrow fly)$
- **2** Penguins are birds. (r_3 : penguin \rightarrow bird)
- **3** Penguins don't fly. (r_4 : penguin $\rightsquigarrow \neg fly$)
- Suppose we have *penguin* as a fact. So $+\Delta$ *penguin*.
- Then we can derive $+\Delta bird$ from r_3 and $+\Delta penguin$
- Then we **cannot** derive $+\partial fly$ from r_1 and $+\Delta bird$; r_4 prevents this.

Example: the Penguin (with a superiority relation)

- **1** Birds can fly. $(r_1 : bird \Rightarrow fly)$
- **2** Penguins are birds. (r_3 : penguin \rightarrow bird)
- **3** Penguins don't fly (r_5 : penguin $\Rightarrow \neg fly$)

```
r_5 > r_1
```

Example: the Penguin (with a defeater)

- **1** Birds can fly. $(r_1 : bird \Rightarrow fly)$
- **2** Penguins are birds. (r_3 : penguin \rightarrow bird)
- **3** Penguins don't fly. (r_4 : penguin $\rightsquigarrow \neg fly$)
- Suppose we have *penguin* as a fact. So $+\Delta$ *penguin*.
- Then we can derive $+\Delta bird$ from r_3 and $+\Delta penguin$
- Then we **cannot** derive $+\partial fly$ from r_1 and $+\Delta bird$; r_4 prevents this.

Example: the Penguin (with a superiority relation)

- **1** Birds can fly. $(r_1 : bird \Rightarrow fly)$
- **2** Penguins are birds. (r_3 : penguin \rightarrow bird)
- **3** Penguins don't fly (r_5 : penguin $\Rightarrow \neg fly$)

 $r_5 > r_1$

- Suppose we have *penguin* as a fact. So $+\Delta$ *penguin*.
- Then we can derive $+\Delta bird$ from r_3 and $+\Delta penguin$
- Then we derive $+\partial \neg fly$ from r_5 and $+\Delta penguin$; r_1 conflicts, but is defeated.

We can extend DL with deontic operators!

New Syntax

- Introduce modal literals: $ModLit = {O(lit) | lit \in Lit}$
- Introduce rule modalities: $\hookrightarrow_* \in \{\rightarrow_*, \Rightarrow_*, \rightsquigarrow_*\}, * \in \{C, O\}$
 - For any $r : A(r) \hookrightarrow_O N(r), N(r) \in ModLit$

We can extend DL with deontic operators!

New Syntax

- Introduce modal literals: $ModLit = {O(lit) | lit \in Lit}$
- Introduce rule modalities: $\hookrightarrow_* \in \{\rightarrow_*, \Rightarrow_*, \rightsquigarrow_*\}, * \in \{C, O\}$
 - For any $r : A(r) \hookrightarrow_O N(r), N(r) \in ModLit$

Translating Norms in DDL

• $\mathbf{O}(p|q)$ translates to $q \Rightarrow_O p$

We can extend DL with deontic operators!

New Syntax

- Introduce modal literals: $ModLit = \{O(lit) | lit \in Lit\}$
- Introduce rule modalities: $\hookrightarrow_* \in \{\rightarrow_*, \Rightarrow_*, \rightsquigarrow_*\}, * \in \{C, O\}$
 - For any $r : A(r) \hookrightarrow_O N(r), N(r) \in ModLit$

Translating Norms in DDL

- $\mathbf{O}(p|q)$ translates to $q \Rightarrow_O p$
- $\mathbf{F}(p|q)$ translates to $q \Rightarrow_O \neg p$

We can extend DL with deontic operators!

New Syntax

- Introduce modal literals: $ModLit = \{O(lit) | lit \in Lit\}$
- Introduce rule modalities: $\hookrightarrow_* \in \{\rightarrow_*, \Rightarrow_*, \rightsquigarrow_*\}, * \in \{C, O\}$
 - For any $r : A(r) \hookrightarrow_O N(r), N(r) \in ModLit$

Translating Norms in DDL

- $\mathbf{O}(p|q)$ translates to $q \Rightarrow_O p$
- $\mathbf{F}(p|q)$ translates to $q \Rightarrow_O \neg p$
- $\mathbf{P}_{s}(p|q)$ translates to $q \rightsquigarrow_{O} p$

We can extend DL with deontic operators!

New Syntax

- Introduce modal literals: $ModLit = \{O(lit) | lit \in Lit\}$
- Introduce rule modalities: $\hookrightarrow_* \in \{\rightarrow_*, \Rightarrow_*, \rightsquigarrow_*\}, * \in \{C, O\}$
 - For any $r : A(r) \hookrightarrow_O N(r), N(r) \in ModLit$

Translating Norms in DDL

- $\mathbf{O}(p|q)$ translates to $q \Rightarrow_O p$
- $\mathbf{F}(p|q)$ translates to $q \Rightarrow_O \neg p$
- $\mathbf{P}_{s}(p|q)$ translates to $q \rightsquigarrow_{O} p$
- C(x, y|c) translates to $c, x \rightarrow_C y$

Reframing Compliance

DDL theory = Facts + Normative System
DDL theory = Facts + Normative System

Interpreting Conclusions

• $+\partial_O p$ means p is obligatory.

DDL theory = Facts + Normative System

- $+\partial_O p$ means p is obligatory.
- $+\partial_O \neg p$ means *p* is forbidden.

DDL theory = Facts + Normative System

- $+\partial_O p$ means p is obligatory.
- $+\partial_O \neg p$ means p is forbidden.
- $-\partial_O \neg p$ means *p* is (weakly) permissible.

DDL theory = Facts + Normative System

- $+\partial_O p$ means p is obligatory.
- $+\partial_O \neg p$ means p is forbidden.
- $-\partial_O \neg p$ means *p* is (weakly) permissible.
- $+\partial_C p$ means we can prove p is true.

DDL theory = Facts + Normative System

- $+\partial_O p$ means p is obligatory.
- $+\partial_O \neg p$ means p is forbidden.
- $-\partial_O \neg p$ means *p* is (weakly) permissible.
- $+\partial_C p$ means we can prove p is true.
- $-\partial_C p$ means we cannot prove p is true.

DDL theory = Facts + Normative System

Interpreting Conclusions

- $+\partial_O p$ means p is obligatory.
- $+\partial_O \neg p$ means *p* is forbidden.
- $-\partial_O \neg p$ means *p* is (weakly) permissible.
- $+\partial_C p$ means we can prove p is true.
- $-\partial_C p$ means we cannot prove p is true.

Violation in DDL

Suppose we have a DDL theory D representing a set of facts F and a normative system. Then a violation is a literal *lit* such that:

 $D \vdash +\partial_O lit, -\partial_C lit$

- You are forbidden from eating cake. ($r_1 : \Rightarrow_O \neg cake$)
- Eating carrot cake counts as eating cake. (r_2 : carrot \rightarrow_C cake)

- You are forbidden from eating cake. ($r_1 : \Rightarrow_O \neg cake$)
- Eating carrot cake counts as eating cake. (r_2 : carrot \rightarrow_C cake)
- Suppose it is a fact that you eat carrot cake, so we have $+\Delta_C carrot$.

- You are forbidden from eating cake. ($r_1 : \Rightarrow_O \neg cake$)
- Eating carrot cake counts as eating cake. (r_2 : carrot \rightarrow_C cake)
- Suppose it is a fact that you eat carrot cake, so we have $+\Delta_C carrot$.
- With r_2 we can derive $+\Delta_C cake$, from which we get $+\partial_C cake$.

- You are forbidden from eating cake. ($r_1 : \Rightarrow_O \neg cake$)
- Eating carrot cake counts as eating cake. (r_2 : carrot \rightarrow_C cake)
- Suppose it is a fact that you eat carrot cake, so we have $+\Delta_C carrot$.
- With r_2 we can derive $+\Delta_C cake$, from which we get $+\partial_C cake$.
- If we have $+\partial_C cake$, we cannot have $+\partial_C \neg cake$; instead, we get $-\partial_C \neg cake$.

- You are forbidden from eating cake. ($r_1 : \Rightarrow_O \neg cake$)
- Eating carrot cake counts as eating cake. (r_2 : carrot \rightarrow_C cake)
- Suppose it is a fact that you eat carrot cake, so we have $+\Delta_C carrot$.
- With r_2 we can derive $+\Delta_C cake$, from which we get $+\partial_C cake$.
- If we have $+\partial_C cake$, we cannot have $+\partial_C \neg cake$; instead, we get $-\partial_C \neg cake$.
- However, from r_1 we get $+\partial_O \neg cake$.

- You are forbidden from eating cake. ($r_1 : \Rightarrow_O \neg cake$)
- Eating carrot cake counts as eating cake. (r_2 : carrot \rightarrow_C cake)
- Suppose it is a fact that you eat carrot cake, so we have $+\Delta_C carrot$.
- With r_2 we can derive $+\Delta_C cake$, from which we get $+\partial_C cake$.
- If we have $+\partial_C cake$, we cannot have $+\partial_C \neg cake$; instead, we get $-\partial_C \neg cake$.
- However, from r_1 we get $+\partial_O \neg cake$.
- There is a violation!

Adding permission

- Take r_1 and r_2 as above.
- On Tuesdays, you are permitted to eat cake. (*r*₃ : *tuesday* →_O *cake*)

Adding permission

- Take r_1 and r_2 as above.
- On Tuesdays, you are permitted to eat cake. (*r*₃ : *tuesday* →_O *cake*)
- As above, if we take *carrot* as a fact, we can derive $-\partial_C \neg cake$.

Adding permission

- Take r_1 and r_2 as above.
- On Tuesdays, you are permitted to eat cake. (r_3 : tuesday \sim_O cake)
- As above, if we take *carrot* as a fact, we can derive $-\partial_C \neg cake$.
- However, if we also have the fact *tuesday*, r_3 prevents us from deriving $+\partial_O \neg cake$ from r_1 .
- No violation!

Adding permission

- Take r_1 and r_2 as above.
- On Tuesdays, you are permitted to eat cake. (r_3 : tuesday \sim_O cake)
- As above, if we take *carrot* as a fact, we can derive $-\partial_C \neg cake$.
- However, if we also have the fact *tuesday*, r_3 prevents us from deriving $+\partial_O \neg cake$ from r_1 .
- No violation!

Conflicting rules

- Take r_1 and r_2 as above.
- If it is a gift, you ought to eat the cake. (r_4 : gift \Rightarrow_O cake)

Adding permission

- Take r_1 and r_2 as above.
- On Tuesdays, you are permitted to eat cake. (r₃ : tuesday →_O cake)
- As above, if we take *carrot* as a fact, we can derive $-\partial_C \neg cake$.
- However, if we also have the fact *tuesday*, r_3 prevents us from deriving $+\partial_O \neg cake$ from r_1 .
- No violation!

Conflicting rules

- Take r_1 and r_2 as above.
- If it is a gift, you ought to eat the cake. (r_4 : gift \Rightarrow_O cake)
- Suppose gift is a fact. If we take $r_4 > r_1$, then we derive $+\partial_O cake$ instead of $+\partial_O cake$.

Adding permission

- Take r_1 and r_2 as above.
- On Tuesdays, you are permitted to eat cake. (r_3 : tuesday \sim_O cake)
- As above, if we take *carrot* as a fact, we can derive $-\partial_C \neg cake$.
- However, if we also have the fact *tuesday*, r_3 prevents us from deriving $+\partial_O \neg cake$ from r_1 .
- No violation!

Conflicting rules

- Take r_1 and r_2 as above.
- If it is a gift, you ought to eat the cake. (r_4 : gift \Rightarrow_O cake)
- Suppose gift is a fact. If we take $r_4 > r_1$, then we derive $+\partial_O cake$ instead of $+\partial_O cake$.
- If we have *carrot* as a fact, we can derive $+\Delta_C cake$ so we cannot derive $-\partial_C cake$.
- No violation!

German

Für das gesamte Plangebiet wird bestimmt: Sofern nichts anderes bestimmt ist, sind Flachdächer von Gebäuden ab einer bebauten Fläche von 30 m^2 , soweit sie nicht als begehbare Terrassen ausgebildet werden, nach dem Stand der technischen Wissenschaften zu begrünen.

English

The following is stipulated for the entire plan area: Unless otherwise stipulated, flat roofs of buildings with a built-up area of 30 m^2 or more, unless they are designed as accessible terraces, are to be greened in accordance with the state of the art.

Extracted Concepts

- BegruenungDach [content] [greened roof]
- 2 Dachart(Flachdach) [condition] [roof type: flat roof]
- Oachart(begehbare Terrasse) [conditionException] [roof type: accessible terrace]
- GesamtePlangebiet [condition] [entire plan area]
- 5 BebauteFlaecheMin(30 m2) [condition] [built-up area minimum]

Extracted Concepts

- BegruenungDach [content] [greened roof]
- 2 Dachart(Flachdach) [condition] [roof type: flat roof]
- Oachart(begehbare Terrasse) [conditionException] [roof type: accessible terrace]
- GesamtePlangebiet [condition] [entire plan area]
- 5 BebauteFlaecheMin(30 m2) [condition] [built-up area minimum]

DDL Formalization

 r_1 : GesamtePlangebiet, BebauteFlaecheMin(30m2), Dachart(Flachdach) \Rightarrow_O BegruenungDach

Extracted Concepts

- BegruenungDach [content] [greened roof]
- 2 Dachart(Flachdach) [condition] [roof type: flat roof]
- Oachart(begehbare Terrasse) [conditionException] [roof type: accessible terrace]
- GesamtePlangebiet [condition] [entire plan area]
- 5 BebauteFlaecheMin(30 m2) [condition] [built-up area minimum]

DDL Formalization

- r_1 : GesamtePlangebiet, BebauteFlaecheMin(30m2), Dachart(Flachdach) \Rightarrow_O BegruenungDach
- r₂: GesamtePlangebiet, BebauteFlaecheMin(30m2), Dachart(begehbareTerrasse) ~, ¬BegruenungDach

Extracted Concepts

- BegruenungDach [content] [greened roof]
- 2 Dachart(Flachdach) [condition] [roof type: flat roof]
- Oachart(begehbare Terrasse) [conditionException] [roof type: accessible terrace]
- GesamtePlangebiet [condition] [entire plan area]
- 5 BebauteFlaecheMin(30 m2) [condition] [built-up area minimum]

DDL Formalization

- r_1 : GesamtePlangebiet, BebauteFlaecheMin(30m2), Dachart(Flachdach) \Rightarrow_O BegruenungDach
- $\label{eq:r2} r_2: \ GesamtePlangebiet, BebauteFlaecheMin(30m2), Dachart(begehbareTerrasse) \\ \sim _O \neg BegruenungDach$

 r_3 : Dachart(begehbareTerrasse) \rightarrow_C Dachart(Flachdach)

Example 1: Facts

- GesamtePlangebiet
- BebauteFlaecheMin(30 m2)
- Dachart(Flachdach)
- BegruenungDach

Example 1: Facts

- GesamtePlangebiet
- BebauteFlaecheMin(30 m2)
- Dachart(Flachdach)
- BegruenungDach

Example 1: Conclusions

• Given the above facts, we get $+\Delta_C GesamtePlangebiet$, $+\Delta_C BebauteFlaecheMin(30m2)$, $+\Delta_C Dachart(Flachdach)$, $+\Delta_C BegruenungDach$.

Example 1: Facts

- GesamtePlangebiet
- BebauteFlaecheMin(30 m2)
- Dachart(Flachdach)
- BegruenungDach

Example 1: Conclusions

- Given the above facts, we get $+\Delta_C GesamtePlangebiet$, $+\Delta_C BebauteFlaecheMin(30m2)$, $+\Delta_C Dachart(Flachdach)$, $+\Delta_C BegruenungDach$.
- Then from r_1 we can derive $+\partial_O BegruenungDach$.
- Since we have $+\Delta_C BegruenungDach$, there is no violation.

Example 2: Facts

- GesamtePlangebiet
- BebauteFlaecheMin(30 m2)
- Dachart(begehbare Terrasse)

Example 2: Facts

- GesamtePlangebiet
- BebauteFlaecheMin(30 m2)
- Dachart(begehbare Terrasse)

Example 2: Conclusions

• Given the above facts, we get $+\Delta_C GesamtePlangebiet$, $+\Delta_C BebauteFlaecheMin(30m2)$, $+\Delta_C Dachart(begehbareTerrasse)$.

Example 2: Facts

- GesamtePlangebiet
- BebauteFlaecheMin(30 m2)
- Dachart(begehbare Terrasse)

Example 2: Conclusions

- Given the above facts, we get $+\Delta_C GesamtePlangebiet$, $+\Delta_C BebauteFlaecheMin(30m2)$, $+\Delta_C Dachart(begehbareTerrasse)$.
- From r_3 and $+\Delta_C Dachart(begehbareTerrasse)$, we can derive $+\Delta_C Dachart(Flachdach)$

Example 2: Facts

- GesamtePlangebiet
- BebauteFlaecheMin(30 m2)
- Dachart(begehbare Terrasse)

Example 2: Conclusions

- Given the above facts, we get $+\Delta_C GesamtePlangebiet$, $+\Delta_C BebauteFlaecheMin(30m2)$, $+\Delta_C Dachart(begehbareTerrasse)$.
- From r_3 and $+\Delta_C Dachart(begehbareTerrasse)$, we can derive $+\Delta_C Dachart(Flachdach)$
- So both r_1 and r_2 are triggered; r_2 defeats r_1 and we cannot derive $+\partial_O BegruenungDach$.

Example 2: Facts

- GesamtePlangebiet
- BebauteFlaecheMin(30 m2)
- Dachart(begehbare Terrasse)

Example 2: Conclusions

- Given the above facts, we get $+\Delta_C GesamtePlangebiet$, $+\Delta_C BebauteFlaecheMin(30m2)$, $+\Delta_C Dachart(begehbareTerrasse)$.
- From r_3 and $+\Delta_C Dachart(begehbareTerrasse)$, we can derive $+\Delta_C Dachart(Flachdach)$
- So both r_1 and r_2 are triggered; r_2 defeats r_1 and we cannot derive $+\partial_O BegruenungDach$.
- There are no obligations to violate.

To Take Home with You

• Logic allows us to model arbitrarily complex constraints.

- Logic allows us to model arbitrarily complex constraints.
- When we use a theorem prover to check compliance, it gives us a sort of "certificate" of the derived results.

- Logic allows us to model arbitrarily complex constraints.
- When we use a theorem prover to check compliance, it gives us a sort of "certificate" of the derived results.
- From a set of conclusions, facts, and rules we can always reconstruct the reasoning that led to those conclusions.

- Logic allows us to model arbitrarily complex constraints.
- When we use a theorem prover to check compliance, it gives us a sort of "certificate" of the derived results.
- From a set of conclusions, facts, and rules we can always reconstruct the reasoning that led to those conclusions.
- Representing ideal behaviour through rules helps with explainability and transparency.
Literature I

References

- D. Nute, "Defeasible logic," in Handbook of Logic in Artificial Intelligence and Logic Programming: Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning, vol. 3, Oxford University Press, 1993.
- [2] M. J. Maher, A. Rock, G. Antoniou, D. Billington, and T. Miller, "Efficient defeasible reasoning systems," *International Journal on Artificial Intelligence Tools*, vol. 10, no. 04, pp. 483–501, 2001.
- [3] G. Governatori and A. Rotolo, "BIO logical agents: Norms, beliefs, intentions in defeasible logic," *Journal of Autonomous Agents and Multi Agent Systems*, vol. 17, no. 1, pp. 36–69, 2008.
- [4] G. Governatori, "Practical normative reasoning with defeasible deontic logic," in *Reasoning Web International Summer School*, Springer, 2018, pp. 1–25.