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Introduction



Logic-based AI

Idea

Design a representation of the world (limited to the small part relevant to
the problem at hand) by means of a logic theory; then, solve a problem via
automated reasoning on its basis.
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Answer Set Programming (ASP)

• Declarative programming language for Knowledge Representation and
Reasoning [GL91, EGM97, MT99, Nie99, EFLP00, BET11]

• Logic paradigm based on rules
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Answer Set Programming (ASP)

• Declarative programming language for Knowledge Representation and
Reasoning [GL91, EGM97, MT99, Nie99, EFLP00, BET11]

• Logic paradigm based on rules

Standard Procedural Programming

• Need for a solving method/algorithm

• Define instructions to be executed “step by step”

• Tell the machine WHAT to do, HOW to solve the problem

ASP-based Declarative Approach

• Specify the features of the desired solution

• NO need for algorithm design

• Just provide the problem specification in form of a logic program

• Models will represent solutions

• You just need an ASP solver that computes such models
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Answer Set Programming (ASP)

• Declarative programming language for Knowledge Representation and
Reasoning [GL91, EGM97, MT99, Nie99, EFLP00, BET11]

• Logic paradigm based on rules
• Able to deal with incomplete knowledge
• Able to model non-monotonic reasoning

• does not store consequences
• what deduced up to a certain point can be invalidated after the acquisition

of new knowledge
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Answer Set Programming (ASP)

• Declarative programming language for Knowledge Representation and
Reasoning [GL91, EGM97, MT99, Nie99, EFLP00, BET11]

• Logic paradigm based on rules
• Able to deal with incomplete knowledge
• Able to model non-monotonic reasoning
• Successfully employed in both academy and industry
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Knowledge Representation and Reasoning with ASP

Computational
Problem

Logic
Program

ASP
System

Solutions
(Answer Sets)
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Knowledge Representation and Reasoning with ASP

The basic construct of ASP is the one of rule:

Head︸ ︷︷ ︸
disjunction

:- Body︸ ︷︷ ︸
conjunction

.

• Interpreted according to common sense principles

• Roughly, its intuitive semantics corresponds to an implication

parent("James Potter","Harry Potter").

son(X,Y) :- parent(Y,X). ⇒ son("Harry Potter","James Potter")
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ASP Syntax and Semantics



ASP Syntax

Core Syntax

• An ASP logic program is a (finite) set of rules of form:

a1 | . . . | an︸ ︷︷ ︸
head atoms

:- b1, . . . , bk, not bk+1, . . . , not bm.︸ ︷︷ ︸
body literals

• A literal is either positive b or negative not b where b is an atom
• An atom has form p(t1, . . . , tn) (typical FO signature), where:

• p is a predicate of arity n

• t1, . . . , tn are terms

• A term is either a variable or a constant

→ saga( "Harry Potter"︸ ︷︷ ︸
string

constant

) → numer of siblings( "Ron"︸ ︷︷ ︸
string

constant

, 6︸︷︷︸
numeric

constant

)

→ parent( Y,X︸︷︷︸
variables

) → horcrux( ring︸ ︷︷ ︸
symbolic

constant

)
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ASP Syntax

Core Syntax

• An ASP logic program is a (finite) set of rules of form:

a1 | . . . | an︸ ︷︷ ︸
head atoms

:- b1, . . . , bk, not bk+1, . . . , not bm.︸ ︷︷ ︸
body literals

• A rule with no literal in its body is a fact
• A rule with no atom in its head is a strong constraint

• A program (rule/literal/atom) with no variables is ground

% fact

saga("Harry Potter").

% (disjunctive) rule

like(X) | dislike(X) :- saga(X).

⇓

like("Harry Potter") | dislike("Harry Potter").
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ASP Syntax

Core Syntax

• An ASP logic program is a (finite) set of rules of form:

a1 | . . . | an︸ ︷︷ ︸
head atoms

:- b1, . . . , bk, not bk+1, . . . , not bm.︸ ︷︷ ︸
body literals

• A rule with no literal in its body is a fact
• A rule with no atom in its head is a strong constraint

• A program (rule/literal/atom) with no variables is ground

%strong constraint

:- pronounce("You-Know-Who").
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ASP Syntax

Linguistic Extensions

• Many extensions:
• new term types: functional terms, arithmetic terms
• new atom and literal types: aggregate literals, built-in atoms
• new rule types: weak constraints, choice rules, queries

• Standard input language: ASP-Core-2 [CFG+12]

novel("Harry Potter and the Philosopher’s Stone").

novel("Harry Potter and the Chamber of Secrets").

novel("Harry Potter and the Prisoner of Azkaban").

novel("Harry Potter and the Goblet of Fire").

novel("Harry Potter and the Order of the Phoenix").

novel("Harry Potter and the Half-Blood Prince").

novel("Harry Potter and the Deathly Hallows").

num of novels(N) :- #count{X:novel(X)}=N. ⇒ num of novels(7).

is not harry potter saga :- num of novels(N), N<7.
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ASP Semantics

ASP semantics is based the concept of answer set [GL91]

Answer sets are only defined for ground programs

• For every non-ground program, a semantically equivalent ground
program can be defied

• instantiation, grounding process

• A program with variables is just a shorthand for its ground
instantiation!
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ASP Semantics

Program Instantiation

Given an ASP program P

• Herbrand Universe (UP ): set of constants occurring in program P

like herry potter(X) | dislike herry potter(X):- person(X).

person("Pina"). person("Ugo").

⇒ UP = {"Pina", "Ugo"}
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ASP Semantics

Program Instantiation

Given an ASP program P

• Herbrand Universe (UP ): set of constants occurring in program P

• Herbrand Base (BP ): set of ground atoms constructible from UP and
predicates in P

like herry potter(X) | dislike herry potter(X):- person(X).

person("Pina"). person("Ugo").

⇒ UP = {"Pina","Ugo"}
⇒ BP = {dislike herry potter("Pina"),

dislike herry potter("Ugo"),

like herry potter("Pina"),

like herry potter("Ugo"),

person("Pina"), person("Ugo")}
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ASP Semantics

Program Instantiation

Given an ASP program P

• Herbrand Universe (UP ): set of constants occurring in program P

• Herbrand Base (BP ): set of ground atoms constructible from UP and
predicates in P

• Instantiation ground(P): set of the ground instances of rules in P
• for each rule r ∈ P : replace each variable in r by a constant in UP

like herry potter(X) | dislike herry potter(X):- person(X).

person("Pina"). person("Ugo").

⇓

like herry potter("Pina")|dislike herry potter("Pina") :- person("Pina").

like herry potter("Ugo")|dislike herry potter("Ugo") :- person("Ugo").

person("Pina"). person("Ugo").
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ASP Semantics

Interpretations

Given an ASP program P the Herbrand Interpretation I for P is a consistent
subset of BP

• an atom a is true w.r.t. I if a ∈ I ; otherwise it is false

• a literal not a is true w.r.t. I if a ̸∈ I ; otherwise it is false

• I is consistent if, for each atom a, {a,¬a} ̸⊆ I

⇓

Models

Given an interpretation I :

• I is a model for P if, for every rule r ∈ P , whenever the body of r is
true w.r.t. I , the head of r is also True w.r.t. I

• I is a minimal model for P if no model N s.t. N ⊂ I exists
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ASP Semantics

like herry potter(X) | dislike herry potter(X):- person(X).

person("Pina"). person("Ugo").

⇓

like herry potter("Pina")|dislike herry potter("Pina") :- person("Pina").

like herry potter("Ugo")|dislike herry potter("Ugo") :- person("Ugo").

person("Pina"). person("Ugo").

I1 = {person("Ugo")} ⇒ (not a model)

I2 = {dislike herry potter("Ugo"), person("Ugo"),

like herry potter("Pina"), dislike herry potter("Pina"),

person("Pina")} ⇒ (model, non minimal)

I3 = {dislike herry potter("Ugo"), person("Ugo"), person("Pina"),

like herry potter("Pina")} ⇒ (model, minimal)

· · ·
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ASP Semantics

Reduct

The reduct or of a program P w.r.t. an interpretation I is the program PI ,
obtained from P by

1. deleting all rules with a negative literal false w.r.t. I

2. deleting the negative literals from the bodies of the remaining rules

Answer Set

Given an interpretation I for a program P , I is an answer set for P if it is a
minimal model for PI
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ASP Semantics

P

a :- d, not b.

b :- not d.

d.

I = { a, d }

a :- d, not b.

b :- not d.

d.

PI

a :- d.

d.

⇓

I is a minimal model of PI and therefore it is an answer set of P

E. Mastria Answer Set Programming 8 / 16



Knowledge Representation and
Reasoning with ASP



A Practical Example

Vertex Cover

Given an undirected graph G = (V,E) select S ⊆ V such that all edges are
covered (i.e. for every edge (a, b) ∈ E either a ∈ S or b ∈ S).

1: node(1). node(2). node(3). edge(1, 2). edge(1, 3). ⇒ Facts
2: inS(X) | outS(X) :-node(X). ⇒ Disjunctive Rule
3: :- edge(X,Y ), not inS(X), not inS(Y ). ⇒ Strong Constraint

1
2

3

1: node(1). node(2). node(3). edge(1, 2). edge(1, 3).
2: inS(1) | outS(1).
3: inS(2) | outS(2).
4: inS(3) | outS(3).
5: :- not inS(1), not inS(2).

6: :- not inS(1), not inS(3).

AS1 = Facts ∪ {inS(1), outS(2), outS(3)} S = {1}
AS2 = Facts ∪ {outS(1), inS(2), inS(3)} S = {2, 3}
AS3 = Facts ∪ {inS(1), inS(2), outS(3)} S = {1, 2}
AS4 = Facts ∪ {inS(1), outS(2), inS(3)} S = {1, 3}
AS5 = Facts ∪ {inS(1), inS(2), inS(3)} S = {1, 2, 3}
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ASP Computation

Canonical approach to solve an ASP program P

over a set of facts F :

1. Grounding (or Instantiation) phase:
• Produces a semantically equivalent

ground (i.e., propositional) program:
ground(P ∪F ) ⊆ groundHerbrand(P ∪F )

2. Solving phase:
• Generates the Answer Set(s) AS(P ∪ F )

AS(P ∪ F ) ≡ AS(ground(P ∪ F )) ≡
AS(groundHerbrand(P ∪ F ))

Input Program

Grounding

Propositional Program

Solving

Answer Set(s)
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ASP Systems

Canonical approach: Ground&Solve

• Stand-alone grounders: Lparse [Syr01], Gringo [GKKS11], I-DLV [CFPZ17]

• Stand-alone solvers: Cmodels [GLM06], Smodels [SNS02],
Clasp [GKS12], Wasp [ADLR15]

• Monolithic systems: DLV [LPF+06, ACD+17], Clingo [GKKS14]

Other approaches

• Lazy Grounding: Gasp [DDPR09], Asperix [LN09, LBSG17],
Omiga [dCHM12], Alpha [Wei17]

• Translation-based systems: LPtoSAT [Jan06]

• ML-based approaches analyse the grounding to select the best
solver [MPR14, CDF+20]
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Thanks for your attention :)

Questions?
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In Krzysztof R. Apt, V. Wiktor Marek, Mirosław Truszczyński, and David S. Warren, editors, The Logic Programming Paradigm – A 25-Year
Perspective, pages 375–398. Springer Verlag, 1999.

Ilkka Niemelä.
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