
Answer Set Programming

Elena Mastria
Department of Mathematics and Computer Science, University of Calabria, Italy

elena.mastria@unical.it

15 November 2022

Outline

1. Introduction

2. ASP Syntax and Semantics

3. Knowledge Representation and Reasoning with ASP

E. Mastria Answer Set Programming 1 / 16

Introduction

Logic-based AI

Idea

Design a representation of the world (limited to the small part relevant to
the problem at hand) by means of a logic theory; then, solve a problem via
automated reasoning on its basis.

E. Mastria Answer Set Programming 2 / 16

Answer Set Programming (ASP)

• Declarative programming language for Knowledge Representation and
Reasoning [GL91, EGM97, MT99, Nie99, EFLP00, BET11]

• Logic paradigm based on rules

E. Mastria Answer Set Programming 3 / 16

Answer Set Programming (ASP)

• Declarative programming language for Knowledge Representation and
Reasoning [GL91, EGM97, MT99, Nie99, EFLP00, BET11]

• Logic paradigm based on rules

Standard Procedural Programming

• Need for a solving method/algorithm

• Define instructions to be executed “step by step”

• Tell the machine WHAT to do, HOW to solve the problem

ASP-based Declarative Approach

• Specify the features of the desired solution

• NO need for algorithm design

• Just provide the problem specification in form of a logic program

• Models will represent solutions

• You just need an ASP solver that computes such models

E. Mastria Answer Set Programming 3 / 16

Answer Set Programming (ASP)

• Declarative programming language for Knowledge Representation and
Reasoning [GL91, EGM97, MT99, Nie99, EFLP00, BET11]

• Logic paradigm based on rules
• Able to deal with incomplete knowledge
• Able to model non-monotonic reasoning

• does not store consequences
• what deduced up to a certain point can be invalidated after the acquisition

of new knowledge

E. Mastria Answer Set Programming 3 / 16

Answer Set Programming (ASP)

• Declarative programming language for Knowledge Representation and
Reasoning [GL91, EGM97, MT99, Nie99, EFLP00, BET11]

• Logic paradigm based on rules
• Able to deal with incomplete knowledge
• Able to model non-monotonic reasoning
• Successfully employed in both academy and industry

E. Mastria Answer Set Programming 3 / 16

Knowledge Representation and Reasoning with ASP

Computational
Problem

Logic
Program

ASP
System

Solutions
(Answer Sets)

E. Mastria Answer Set Programming 4 / 16

Knowledge Representation and Reasoning with ASP

The basic construct of ASP is the one of rule:

Head︸ ︷︷ ︸
disjunction

:- Body︸ ︷︷ ︸
conjunction

.

• Interpreted according to common sense principles

• Roughly, its intuitive semantics corresponds to an implication

parent("James Potter","Harry Potter").

son(X,Y) :- parent(Y,X). ⇒ son("Harry Potter","James Potter")

E. Mastria Answer Set Programming 5 / 16

ASP Syntax and Semantics

ASP Syntax

Core Syntax

• An ASP logic program is a (finite) set of rules of form:

a1 | . . . | an︸ ︷︷ ︸
head atoms

:- b1, . . . , bk, not bk+1, . . . , not bm.︸ ︷︷ ︸
body literals

• A literal is either positive b or negative not b where b is an atom
• An atom has form p(t1, . . . , tn) (typical FO signature), where:

• p is a predicate of arity n

• t1, . . . , tn are terms

• A term is either a variable or a constant

→ saga("Harry Potter"︸ ︷︷ ︸
string

constant

) → numer of siblings("Ron"︸ ︷︷ ︸
string

constant

, 6︸︷︷︸
numeric

constant

)

→ parent(Y,X︸︷︷︸
variables

) → horcrux(ring︸ ︷︷ ︸
symbolic

constant

)

E. Mastria Answer Set Programming 6 / 16

ASP Syntax

Core Syntax

• An ASP logic program is a (finite) set of rules of form:

a1 | . . . | an︸ ︷︷ ︸
head atoms

:- b1, . . . , bk, not bk+1, . . . , not bm.︸ ︷︷ ︸
body literals

• A rule with no literal in its body is a fact
• A rule with no atom in its head is a strong constraint

• A program (rule/literal/atom) with no variables is ground

% fact

saga("Harry Potter").

% (disjunctive) rule

like(X) | dislike(X) :- saga(X).

⇓

like("Harry Potter") | dislike("Harry Potter").

E. Mastria Answer Set Programming 6 / 16

ASP Syntax

Core Syntax

• An ASP logic program is a (finite) set of rules of form:

a1 | . . . | an︸ ︷︷ ︸
head atoms

:- b1, . . . , bk, not bk+1, . . . , not bm.︸ ︷︷ ︸
body literals

• A rule with no literal in its body is a fact
• A rule with no atom in its head is a strong constraint

• A program (rule/literal/atom) with no variables is ground

%strong constraint

:- pronounce("You-Know-Who").

E. Mastria Answer Set Programming 6 / 16

ASP Syntax

Linguistic Extensions

• Many extensions:
• new term types: functional terms, arithmetic terms
• new atom and literal types: aggregate literals, built-in atoms
• new rule types: weak constraints, choice rules, queries

• Standard input language: ASP-Core-2 [CFG+12]

novel("Harry Potter and the Philosopher’s Stone").

novel("Harry Potter and the Chamber of Secrets").

novel("Harry Potter and the Prisoner of Azkaban").

novel("Harry Potter and the Goblet of Fire").

novel("Harry Potter and the Order of the Phoenix").

novel("Harry Potter and the Half-Blood Prince").

novel("Harry Potter and the Deathly Hallows").

num of novels(N) :- #count{X:novel(X)}=N. ⇒ num of novels(7).

is not harry potter saga :- num of novels(N), N<7.

E. Mastria Answer Set Programming 7 / 16

ASP Semantics

ASP semantics is based the concept of answer set [GL91]

Answer sets are only defined for ground programs

• For every non-ground program, a semantically equivalent ground
program can be defied

• instantiation, grounding process

• A program with variables is just a shorthand for its ground
instantiation!

E. Mastria Answer Set Programming 8 / 16

ASP Semantics

Program Instantiation

Given an ASP program P

• Herbrand Universe (UP): set of constants occurring in program P

like herry potter(X) | dislike herry potter(X):- person(X).

person("Pina"). person("Ugo").

⇒ UP = {"Pina", "Ugo"}

E. Mastria Answer Set Programming 8 / 16

ASP Semantics

Program Instantiation

Given an ASP program P

• Herbrand Universe (UP): set of constants occurring in program P

• Herbrand Base (BP): set of ground atoms constructible from UP and
predicates in P

like herry potter(X) | dislike herry potter(X):- person(X).

person("Pina"). person("Ugo").

⇒ UP = {"Pina","Ugo"}
⇒ BP = {dislike herry potter("Pina"),

dislike herry potter("Ugo"),

like herry potter("Pina"),

like herry potter("Ugo"),

person("Pina"), person("Ugo")}

E. Mastria Answer Set Programming 8 / 16

ASP Semantics

Program Instantiation

Given an ASP program P

• Herbrand Universe (UP): set of constants occurring in program P

• Herbrand Base (BP): set of ground atoms constructible from UP and
predicates in P

• Instantiation ground(P): set of the ground instances of rules in P
• for each rule r ∈ P : replace each variable in r by a constant in UP

like herry potter(X) | dislike herry potter(X):- person(X).

person("Pina"). person("Ugo").

⇓

like herry potter("Pina")|dislike herry potter("Pina") :- person("Pina").

like herry potter("Ugo")|dislike herry potter("Ugo") :- person("Ugo").

person("Pina"). person("Ugo").

E. Mastria Answer Set Programming 8 / 16

ASP Semantics

Interpretations

Given an ASP program P the Herbrand Interpretation I for P is a consistent
subset of BP

• an atom a is true w.r.t. I if a ∈ I ; otherwise it is false

• a literal not a is true w.r.t. I if a ̸∈ I ; otherwise it is false

• I is consistent if, for each atom a, {a,¬a} ̸⊆ I

⇓

Models

Given an interpretation I :

• I is a model for P if, for every rule r ∈ P , whenever the body of r is
true w.r.t. I , the head of r is also True w.r.t. I

• I is a minimal model for P if no model N s.t. N ⊂ I exists

E. Mastria Answer Set Programming 8 / 16

ASP Semantics

like herry potter(X) | dislike herry potter(X):- person(X).

person("Pina"). person("Ugo").

⇓

like herry potter("Pina")|dislike herry potter("Pina") :- person("Pina").

like herry potter("Ugo")|dislike herry potter("Ugo") :- person("Ugo").

person("Pina"). person("Ugo").

I1 = {person("Ugo")} ⇒ (not a model)

I2 = {dislike herry potter("Ugo"), person("Ugo"),

like herry potter("Pina"), dislike herry potter("Pina"),

person("Pina")} ⇒ (model, non minimal)

I3 = {dislike herry potter("Ugo"), person("Ugo"), person("Pina"),

like herry potter("Pina")} ⇒ (model, minimal)

· · ·

E. Mastria Answer Set Programming 8 / 16

ASP Semantics

Reduct

The reduct or of a program P w.r.t. an interpretation I is the program PI ,
obtained from P by

1. deleting all rules with a negative literal false w.r.t. I

2. deleting the negative literals from the bodies of the remaining rules

Answer Set

Given an interpretation I for a program P , I is an answer set for P if it is a
minimal model for PI

E. Mastria Answer Set Programming 8 / 16

ASP Semantics

P

a :- d, not b.

b :- not d.

d.

I = { a, d }

a :- d, not b.

b :- not d.

d.

PI

a :- d.

d.

⇓

I is a minimal model of PI and therefore it is an answer set of P

E. Mastria Answer Set Programming 8 / 16

Knowledge Representation and
Reasoning with ASP

A Practical Example

Vertex Cover

Given an undirected graph G = (V,E) select S ⊆ V such that all edges are
covered (i.e. for every edge (a, b) ∈ E either a ∈ S or b ∈ S).

1: node(1). node(2). node(3). edge(1, 2). edge(1, 3). ⇒ Facts
2: inS(X) | outS(X) :-node(X). ⇒ Disjunctive Rule
3: :- edge(X,Y), not inS(X), not inS(Y). ⇒ Strong Constraint

1
2

3

1: node(1). node(2). node(3). edge(1, 2). edge(1, 3).
2: inS(1) | outS(1).
3: inS(2) | outS(2).
4: inS(3) | outS(3).
5: :- not inS(1), not inS(2).

6: :- not inS(1), not inS(3).

AS1 = Facts ∪ {inS(1), outS(2), outS(3)} S = {1}
AS2 = Facts ∪ {outS(1), inS(2), inS(3)} S = {2, 3}
AS3 = Facts ∪ {inS(1), inS(2), outS(3)} S = {1, 2}
AS4 = Facts ∪ {inS(1), outS(2), inS(3)} S = {1, 3}
AS5 = Facts ∪ {inS(1), inS(2), inS(3)} S = {1, 2, 3}

E. Mastria Answer Set Programming 9 / 16

A Practical Example

Vertex Cover

Given an undirected graph G = (V,E) select S ⊆ V such that all edges are
covered (i.e. for every edge (a, b) ∈ E either a ∈ S or b ∈ S).

1: node(1). node(2). node(3). edge(1, 2). edge(1, 3). ⇒ Facts
2: inS(X) | outS(X) :-node(X). ⇒ Disjunctive Rule
3: :- edge(X,Y), not inS(X), not inS(Y). ⇒ Strong Constraint

1
2

3

1: node(1). node(2). node(3). edge(1, 2). edge(1, 3).
2: inS(1) | outS(1).
3: inS(2) | outS(2).
4: inS(3) | outS(3).
5: :- not inS(1), not inS(2).

6: :- not inS(1), not inS(3).

AS1 = Facts ∪ {inS(1), outS(2), outS(3)} S = {1}
AS2 = Facts ∪ {outS(1), inS(2), inS(3)} S = {2, 3}
AS3 = Facts ∪ {inS(1), inS(2), outS(3)} S = {1, 2}
AS4 = Facts ∪ {inS(1), outS(2), inS(3)} S = {1, 3}
AS5 = Facts ∪ {inS(1), inS(2), inS(3)} S = {1, 2, 3}

E. Mastria Answer Set Programming 9 / 16

A Practical Example

Vertex Cover

Given an undirected graph G = (V,E) select S ⊆ V such that all edges are
covered (i.e. for every edge (a, b) ∈ E either a ∈ S or b ∈ S).

1: node(1). node(2). node(3). edge(1, 2). edge(1, 3). ⇒ Facts
2: inS(X) | outS(X) :-node(X). ⇒ Disjunctive Rule
3: :- edge(X,Y), not inS(X), not inS(Y). ⇒ Strong Constraint

1
2

3

1: node(1). node(2). node(3). edge(1, 2). edge(1, 3).
2: inS(1) | outS(1) :-node(1).
3: inS(2) | outS(2) :-node(2).
4: inS(3) | outS(3) :-node(3).
5: :- edge(1, 1), not inS(1), not inS(1).

6: :- edge(1, 2), not inS(1), not inS(2).

7: :- edge(1, 3), not inS(1), not inS(3).

8: :- edge(2, 1), not inS(2), not inS(1).

9: :- edge(2, 2), not inS(2), not inS(2).

10: :- edge(2, 3), not inS(3), not inS(3).

11: :- edge(3, 1), not inS(3), not inS(1).

12: :- edge(3, 2), not inS(3), not inS(2).

13: :- edge(3, 3), not inS(3), not inS(3).

AS1 = Facts ∪ {inS(1), outS(2), outS(3)} S = {1}
AS2 = Facts ∪ {outS(1), inS(2), inS(3)} S = {2, 3}
AS3 = Facts ∪ {inS(1), inS(2), outS(3)} S = {1, 2}
AS4 = Facts ∪ {inS(1), outS(2), inS(3)} S = {1, 3}
AS5 = Facts ∪ {inS(1), inS(2), inS(3)} S = {1, 2, 3}

E. Mastria Answer Set Programming 9 / 16

A Practical Example

Vertex Cover

Given an undirected graph G = (V,E) select S ⊆ V such that all edges are
covered (i.e. for every edge (a, b) ∈ E either a ∈ S or b ∈ S).

1: node(1). node(2). node(3). edge(1, 2). edge(1, 3). ⇒ Facts
2: inS(X) | outS(X) :-node(X). ⇒ Disjunctive Rule
3: :- edge(X,Y), not inS(X), not inS(Y). ⇒ Strong Constraint

1
2

3

1: node(1). node(2). node(3). edge(1, 2). edge(1, 3).
2: inS(1) | outS(1) :-node(1).
3: inS(2) | outS(2) :-node(2).
4: inS(3) | outS(3) :-node(3).
5: :- edge(1, 1), not inS(1), not inS(1).

6: :- edge(1, 2), not inS(1), not inS(2).

7: :- edge(1, 3), not inS(1), not inS(3).

8: :- edge(2, 1), not inS(2), not inS(1).

9: :- edge(2, 2), not inS(2), not inS(2).

10: :- edge(2, 3), not inS(3), not inS(3).

11: :- edge(3, 1), not inS(3), not inS(1).

12: :- edge(3, 2), not inS(3), not inS(2).

13: :- edge(3, 3), not inS(3), not inS(3).

AS1 = Facts ∪ {inS(1), outS(2), outS(3)} S = {1}
AS2 = Facts ∪ {outS(1), inS(2), inS(3)} S = {2, 3}
AS3 = Facts ∪ {inS(1), inS(2), outS(3)} S = {1, 2}
AS4 = Facts ∪ {inS(1), outS(2), inS(3)} S = {1, 3}
AS5 = Facts ∪ {inS(1), inS(2), inS(3)} S = {1, 2, 3}

E. Mastria Answer Set Programming 9 / 16

A Practical Example

Vertex Cover

Given an undirected graph G = (V,E) select S ⊆ V such that all edges are
covered (i.e. for every edge (a, b) ∈ E either a ∈ S or b ∈ S).

1: node(1). node(2). node(3). edge(1, 2). edge(1, 3). ⇒ Facts
2: inS(X) | outS(X) :-node(X). ⇒ Disjunctive Rule
3: :- edge(X,Y), not inS(X), not inS(Y). ⇒ Strong Constraint

1
2

3

1: node(1). node(2). node(3). edge(1, 2). edge(1, 3).
2: inS(1) | outS(1).
3: inS(2) | outS(2).
4: inS(3) | outS(3).
5: :- not inS(1), not inS(2).

6: :- not inS(1), not inS(3).

AS1 = Facts ∪ {inS(1), outS(2), outS(3)} S = {1}
AS2 = Facts ∪ {outS(1), inS(2), inS(3)} S = {2, 3}
AS3 = Facts ∪ {inS(1), inS(2), outS(3)} S = {1, 2}
AS4 = Facts ∪ {inS(1), outS(2), inS(3)} S = {1, 3}
AS5 = Facts ∪ {inS(1), inS(2), inS(3)} S = {1, 2, 3}

E. Mastria Answer Set Programming 9 / 16

A Practical Example

Vertex Cover

Given an undirected graph G = (V,E) select S ⊆ V such that all edges are
covered (i.e. for every edge (a, b) ∈ E either a ∈ S or b ∈ S).

1: node(1). node(2). node(3). edge(1, 2). edge(1, 3). ⇒ Facts
2: inS(X) | outS(X) :-node(X). ⇒ Disjunctive Rule
3: :- edge(X,Y), not inS(X), not inS(Y). ⇒ Strong Constraint

1
2

3

1: node(1). node(2). node(3). edge(1, 2). edge(1, 3).
2: inS(1) | outS(1).
3: inS(2) | outS(2).
4: inS(3) | outS(3).
5: :- not inS(1), not inS(2).

6: :- not inS(1), not inS(3).

AS1 = Facts ∪ {inS(1), outS(2), outS(3)} S = {1}
AS2 = Facts ∪ {outS(1), inS(2), inS(3)} S = {2, 3}
AS3 = Facts ∪ {inS(1), inS(2), outS(3)} S = {1, 2}
AS4 = Facts ∪ {inS(1), outS(2), inS(3)} S = {1, 3}
AS5 = Facts ∪ {inS(1), inS(2), inS(3)} S = {1, 2, 3}

E. Mastria Answer Set Programming 9 / 16

ASP Computation

Canonical approach to solve an ASP program P

over a set of facts F :

1. Grounding (or Instantiation) phase:
• Produces a semantically equivalent

ground (i.e., propositional) program:
ground(P ∪F) ⊆ groundHerbrand(P ∪F)

2. Solving phase:
• Generates the Answer Set(s) AS(P ∪ F)

AS(P ∪ F) ≡ AS(ground(P ∪ F)) ≡
AS(groundHerbrand(P ∪ F))

Input Program

Grounding

Propositional Program

Solving

Answer Set(s)

E. Mastria Answer Set Programming 10 / 16

ASP Computation

Canonical approach to solve an ASP program P

over a set of facts F :
1. Grounding (or Instantiation) phase:

• Produces a semantically equivalent
ground (i.e., propositional) program:
ground(P ∪F) ⊆ groundHerbrand(P ∪F)

2. Solving phase:
• Generates the Answer Set(s) AS(P ∪ F)

AS(P ∪ F) ≡ AS(ground(P ∪ F)) ≡
AS(groundHerbrand(P ∪ F))

Input Program

Grounding

Propositional Program

Solving

Answer Set(s)

E. Mastria Answer Set Programming 10 / 16

ASP Computation

Canonical approach to solve an ASP program P

over a set of facts F :
1. Grounding (or Instantiation) phase:

• Produces a semantically equivalent
ground (i.e., propositional) program:
ground(P ∪F) ⊆ groundHerbrand(P ∪F)

2. Solving phase:
• Generates the Answer Set(s) AS(P ∪ F)

AS(P ∪ F) ≡ AS(ground(P ∪ F)) ≡
AS(groundHerbrand(P ∪ F))

Input Program

Grounding

Propositional Program

Solving

Answer Set(s)

E. Mastria Answer Set Programming 10 / 16

ASP Systems

Canonical approach: Ground&Solve

• Stand-alone grounders: Lparse [Syr01], Gringo [GKKS11], I-DLV [CFPZ17]

• Stand-alone solvers: Cmodels [GLM06], Smodels [SNS02],
Clasp [GKS12], Wasp [ADLR15]

• Monolithic systems: DLV [LPF+06, ACD+17], Clingo [GKKS14]

Other approaches

• Lazy Grounding: Gasp [DDPR09], Asperix [LN09, LBSG17],
Omiga [dCHM12], Alpha [Wei17]

• Translation-based systems: LPtoSAT [Jan06]

• ML-based approaches analyse the grounding to select the best
solver [MPR14, CDF+20]

E. Mastria Answer Set Programming 11 / 16

Thanks for your attention :)

Questions?

References i

Mario Alviano, Francesco Calimeri, Carmine Dodaro, Davide Fuscà, Nicola Leone,
Simona Perri, Francesco Ricca, Pierfrancesco Veltri, and Jessica Zangari.
The ASP system DLV2.
In Balduccini and Janhunen [BJ17], pages 215–221.

Mario Alviano, Carmine Dodaro, Nicola Leone, and Francesco Ricca.
Advances in WASP.
In Francesco Calimeri, Giovambattista Ianni, and Miroslaw Truszczynski, editors, Logic Programming and Nonmonotonic Reasoning -
13th International Conference, LPNMR 2015, Lexington, KY, USA, September 27-30, 2015. Proceedings, volume 9345 of Lecture Notes in
Computer Science, pages 40–54. Springer, 2015.

Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski.
Answer set programming at a glance.
Communications of the ACM, 54(12):92–103, 2011.

Marcello Balduccini and Tomi Janhunen, editors.
Logic Programming and Nonmonotonic Reasoning - 14th International Conference,
LPNMR 2017, Espoo, Finland, July 3-6, 2017, Proceedings, volume 10377 of Lecture
Notes in Computer Science. Springer, 2017.

Francesco Calimeri, Carmine Dodaro, Davide Fuscà, Simona Perri, and Jessica
Zangari.
Efficiently coupling the I-DLV grounder with ASP solvers.
Theory Pract. Log. Program., 20(2):205–224, 2020.

E. Mastria Answer Set Programming 12 / 16

References ii

Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni, Roland
Kaminski, Thomas Krennwallner, Nicola Leone, Francesco Ricca, and Torsten Schaub.
Asp-core-2: Input language format, 2012.
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf.

Francesco Calimeri, Davide Fuscà, Simona Perri, and Jessica Zangari.
I-DLV : The New Intelligent Grounder of DLV.
Intelligenza Artificiale, 11(1):5–20, 2017.

Luis Fariñas del Cerro, Andreas Herzig, and Jérôme Mengin, editors.
Logics in Artificial Intelligence - 13th European Conference, JELIA 2012, Toulouse,
France, September 26-28, 2012. Proceedings, volume 7519 of Lecture Notes in
Computer Science. Springer, 2012.

Alessandro Dal Palù, Agostino Dovier, Enrico Pontelli, and Gianfranco Rossi.
GASP: Answer Set Programming with Lazy Grounding.
Fundamenta Informaticae, 96(3):297–322, 2009.

Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer.
Declarative Problem-Solving using the DLV System.
In Logic-based artificial intelligence, pages 79–103. Springer, 2000.

E. Mastria Answer Set Programming 13 / 16

https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03b.pdf

References iii

Thomas Eiter, Georg Gottlob, and Heikki Mannila.
Disjunctive Datalog.
ACM Transactions on Database Systems, 22(3):364–418, September 1997.

Martin Gebser, Roland Kaminski, Arne König, and Torsten Schaub.
Advances in gringo series 3.
In Logic Programming and Nonmonotonic Reasoning - 11th International Conference, LPNMR 2011, Vancouver, Canada, May 16-19, 2011.
Proceedings, volume 6645 of Lecture Notes in Computer Science, pages 345–351. Springer, 2011.

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.
Clingo = ASP + control: Preliminary report.
In M. Leuschel and T. Schrijvers, editors, Technical Communications of the Thirtieth International Conference on Logic Programming
(ICLP’14), volume arXiv:1405.3694v1, 2014. Theory and Practice of Logic Programming, Online Supplement.

M. Gebser, B. Kaufmann, and T. Schaub.
Conflict-driven answer set solving: From theory to practice.
Artificial Intelligence, 187-188:52–89, 2012.

Michael Gelfond and Vladimir Lifschitz.
Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing, 9(3/4):365–385, 1991.

Enrico Giunchiglia, Yulia Lierler, and Marco Maratea.
Answer Set Programming Based on Propositional Satisfiability.
Journal of Automated Reasoning, 36(4):345–377, 2006.

E. Mastria Answer Set Programming 14 / 16

References iv

Tomi Janhunen.
Some (in)translatability results for normal logic programs and propositional
theories.
Journal of Applied Non-Classical Logics, 16(1-2):35–86, 2006.

Claire Lefèvre, Christopher Béatrix, Igor Stéphan, and Laurent Garcia.
ASPeRiX, a first-order forward chaining approach for answer set computing.
Theory and Practice of Logic Programming, 17(3):266–310, 2017.

Claire Lefèvre and Pascal Nicolas.
The first version of a new asp solver : Asperix.
In Esra Erdem, Fangzhen Lin, and Torsten Schaub, editors, Logic Programming and Nonmonotonic Reasoning — 10th International
Conference (LPNMR 2009), volume 5753 of Lecture Notes in Computer Science, pages 522–527. Springer Verlag, September 2009.

Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona
Perri, and Francesco Scarcello.
The dlv system for knowledge representation and reasoning.
ACM Transactions on Computational Logic (TOCL), 7(3):499–562, 2006.

Marco Maratea, Luca Pulina, and Francesco Ricca.
A multi-engine approach to answer-set programming.
Theory Pract. Log. Program., 14(6):841–868, 2014.

E. Mastria Answer Set Programming 15 / 16

References v

Victor W. Marek and Mirosław Truszczyński.
Stable Models and an Alternative Logic Programming Paradigm.
In Krzysztof R. Apt, V. Wiktor Marek, Mirosław Truszczyński, and David S. Warren, editors, The Logic Programming Paradigm – A 25-Year
Perspective, pages 375–398. Springer Verlag, 1999.

Ilkka Niemelä.
Logic Programming with Stable Model Semantics as Constraint Programming
Paradigm.
Annals of Mathematics and Artificial Intelligence, 25(3–4):241–273, 1999.

Patrik Simons, Ilkka Niemelä, and Timo Soininen.
Extending and implementing the stable model semantics.
Artif. Intell., 138(1-2):181–234, 2002.

Tommi Syrjänen.
Omega-restricted logic programs.
In Thomas Eiter, Wolfgang Faber, and Miroslaw Truszczynski, editors, Logic Programming and Nonmonotonic Reasoning, 6th
International Conference, LPNMR 2001, Vienna, Austria, September 17-19, 2001, Proceedings, volume 2173 of Lecture Notes in Computer
Science, pages 267–279. Springer, 2001.

Antonius Weinzierl.
Blending lazy-grounding and CDNL search for answer-set solving.
In Balduccini and Janhunen [BJ17], pages 191–204.

E. Mastria Answer Set Programming 16 / 16

	Introduction
	ASP Syntax and Semantics
	Knowledge Representation and Reasoning with ASP

