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Disclaimer
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This presentation contains profane words.
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HateXplain, Rationales
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HateXplain

● Annotated Amazon MTurk dataset with 3-classes (hate, offensive, normal)
● Several target communities
● Annotation contains rationales 

Rationales

„Human attention“

Show which part of the sentence is important 
for the decision

→ Means of explainability

MATHEW, Binny, et al. HateXplain: A benchmark dataset for explainable hate speech detection. arXiv preprint arXiv:2012.10289, 2020.



Used Explainability Framework
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Modern deep learning architectures like 
BERT ad-hoc only locally self-explaining 
(trust?)

→ Extract linguistic rules with a 
rule-based system

Danilevsky, Marina, et al. "A survey of the state of explainable AI for natural language processing." arXiv preprint arXiv:2010.00711 (2020).



Used Explainability Framework
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Rule Systems → 

Modern deep learning architectures like 
BERT ad-hoc only locally self-explaining 
(trust?)

→ Extract linguistic rules with a 
rule-based system

Danilevsky, Marina, et al. "A survey of the state of explainable AI for natural language processing." arXiv preprint arXiv:2010.00711 (2020).

Rationales → 



ERASER Framework
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Young et al.

● Propose several metrics for predicted rationals

● Aim to capture two dimensions:
1) How well rationales by models align with human rationales
2) To which degree the rationales influence the prediction

● Provide an open source implementation on Github
● (Also provide example datasets & a leaderboard)

https://www.eraserbenchmark.com/

1) → „Plausibility“
2) → „Faithfulness“

DEYOUNG, Jay, et al. ERASER: A benchmark to evaluate rationalized NLP models. arXiv preprint arXiv:1911.03429, 2019.

Evaluating Rationales And Simple English Reasoning



Plausibility
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Agreement with human rationales

Interpretation: How convincing the interpretation is to humans
Two variants: discrete and „soft“ selection

Discrete:

Intersection-Over-Union(IOU): for two spans,
Partial match = overlap/union > threshold [0.5]
IOU F1 = F1Score(all partial matches)
Token F1 = (token-level precision & recall)

Continuous:

Area Under the Precision-Recall Curve (AUPRC)
Sweeping a threshold over token scores

DEYOUNG, Jay, et al. ERASER: A benchmark to evaluate rationalized NLP models. arXiv preprint arXiv:1911.03429, 2019.



Faithfulness
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Influence of the rationales to the prediction

Interpretation: How accurately it reflects the true reasoning process of the model
Two metrics, 

say m(xi) ist the probability that sentence xi is classified offensive
m(ri) is the probability that the predicted rationales ri alone are classified offensive
m(xi\ri) is the sentence with removed predicted rationales

Comprehensiveness:
(Were all features needed to make a prediction?)
● = m(xi) – m(xi\ri)
● The higher, the better (negative: model became more confident w/o rationales)
Sufficiency:
(Do extracted rationales contain enough signal?)
● = m(xi) – m(ri)
● The lower, the better

DEYOUNG, Jay, et al. ERASER: A benchmark to evaluate rationalized NLP models. arXiv preprint arXiv:1911.03429, 2019.



Faithfulness (cont.)
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How to remove continous rationales?

→ Remove top k rationales (threshold)

● Aggregation:
● Motivated by saliency maps
● Group rationals in k=5 bins
● rik = rationale i up to and including bin k 
● Top 1%, 5%, 10%; 20%, 50%
● „Area Over the Perturbation Curve“

DEYOUNG, Jay, et al. ERASER: A benchmark to evaluate rationalized NLP models. arXiv preprint arXiv:1911.03429, 2019.



ERASER Output
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If e.g. soft rationale is not in the input file (see later):

ERASER skips calculation

DEYOUNG, Jay, et al. ERASER: A benchmark to evaluate rationalized NLP models. arXiv preprint arXiv:1911.03429, 2019.



Applying the metrics to POTATO
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Plausibility:

● Currently, hard predictions are implemented for
IOU F1 & Token F1

● The predicted rationales are all words of matching rules
→ [„into“, „drop“, „entity1“, „entity2“]

Faithfulness:

● The probability function m(x) is between 0 and 
1, deep learning logits are continous

● However, a potato rule matches either fully or 
not

● Single sentence faithfulness metrics are either 0 
or 1 (Smoothed out by aggregation)



ERASER Input
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Format

● jsonl
● Slightly different formats for ground 

truth and prediction
● Text is not in the jsonl but in the docs 

folder



ERASER Input (Ground Truth)
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https://www.eraserbenchmark.com/



ERASER Input (Prediction)

15

= m(xi)  m(ri)

= m(xi)  m(xi\ri)

https://www.eraserbenchmark.com/



Calling ERASER
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ERASER structure:
Just to important files:
rationale_benchmark/metrics.py Contains main() function
rationale_benchmark/util.py Contains documentation

Current way to call ERASER:
● Local copy in potato/scripts folder
● main() needs arguments
● Copied the content of the main

function to runEvaluation
● Parameters are arguments

In evaluation script:

  



Applying the metrics to HateXplain
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Rationales

● Only available for hatespeech/offensive classes
● HateXplain just discards all non-hate ground truth data

Dirty hack

● Hardcoded normal class in ERASER metrics.py

Dirty hack

● Hardcoded normal class in ERASER metrics.py

Advantage of discarding:

● We can in theory now directly compare our results
to the HateXplain models



First Results of Plausibility
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→ AUPRC would need continuous 
rationale prediction (possible if smoothed out)

→ scores will be better with multi-rule matching

→ only single word nodes are returned, no ‚|‘ yet 

(see later)

MATHEW, Binny, et al. HateXplain: A benchmark dataset for explainable hate speech detection. arXiv preprint arXiv:2012.10289, 2020.

Model IOU F1 Token F1

(BERT
HXPlain)
(test.jsonl)

(0.126) (0.444)

Rules:
sexism
val.tsv

0.279 0.165

Rules:
homophobia 
secondary_val.tsv

0.090 0.047

→ sanity check:
HateXplain BERT ran on original 
hatespeech/offensive/normal task

→ Rules ran on <target>/None task

PS: regarding testing: val is shorter than train



Further Work
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Important:
1)Multi-rule matching
2)Predicted labels to calculate Faithfulness
3)Support ‚|‘ (see homophobia rules)

Further Experiments:
1)Rationale smoothing to get AUPRC
2)Faithfulness: Different ways of masking words (<UNK>, parsing, 

etc.)
3)Integration into Potato?
4)Evaluate human annotators
5)Look at normalized ERASER metrics (Carton et al.)
6)Reimplement ERASER metrics
7)Create rule system for another target
8)Extend „HASOC 100% dataset“ with rationales



1) Rationale smoothing for AUPRC
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Prediction:
[1, 0, 0, 0, 1, 0, 0,...]
→
[0.2324, 0.0111, 0.0024, 0.0032, 0.5342, …]

→ soft_prediction AUPRC score



2) Faithfulness Masking
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m(xi\ri)

●xi\ri = ???

1) Swap rationales with e.g. <UNK> token and parse again
2) Mask nodes from existing graph
3) Remove from rationales sentence and parse again



3) Integration into Potato
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●Currently, evaluate_HateXplain calls extern ERASER script
● Integration of evaluate_HateXplain.py: leave in scripts folder
●Create more general evaluate_rationals?



4) Evaluate human annotators
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HateXplain already done by Carton et al.

Maybe with a smaller dataset? → See 8) 

CARTON, Samuel; RATHORE, Anirudh; TAN, Chenhao. Evaluating and characterizing human rationales. arXiv preprint arXiv:2010.04736, 
2020.



5) Look at normalized ERASER metrics
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Evaluate if needed, idea of a metric is to compare

CARTON, Samuel; RATHORE, Anirudh; TAN, Chenhao. Evaluating and characterizing human rationales. arXiv preprint arXiv:2010.04736, 
2020.



6) Reimplement ERASER metrics
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→ No need for ERASER-specific input format
→ Room for extensions: new metrics, adapted metrics



7) Create rule system for another target
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→ Are two rule systems enough?

There is another option...



8) … „100% dataset“ rationales
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→ Was created by hand from HASOC data
→ Hate annotation is subjective
→ Inconsistent annotations were removed
→ 200 entries 
→ Includes a rule system with 100% precision

Add rationales by hand too and run ERASER on it?



Measuring explainability in hate speech 
detection using the HateXplain dataset 

Questions / Discussion / Thank you!
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