

Measuring explainability in hate speech detection using the HateXplain dataset

Seminar Talk, Markus Reichel 01529191 TUW NLP Seminar

Advisors: Gábor Recski, PhD Univ.Prof. Dr. Allan Hanbury

This presentation contains profane words.

- HateXplain, Rationales
- Explainability Theory
- ERASER benchmark
- Implementing ERASER
- First Results
- Further Work
- Discussion

HateXplain, Rationales

HateXplain

- Annotated Amazon MTurk dataset with 3-classes (hate, offensive, normal)
- Several target communities
- Annotation contains rationales

Rationales

"Human attention"

Show which part of the sentence is important for the decision

ightarrow Means of explainability

Text	Dad should have told the muzrat whore
	to fuck off, and went in anyway
Label	Hate
Targets	Islam
Text	A nigress too dumb to fuck has a scant
	chance of understanding anything beyond
	the size of a dick
Label	Hate
Targets	Women, African
Text	Twitter is full of tween dikes who think
	they're superior because of "muh oppression."
	News flash: No one gives a shit.
Label	Offensive
Targets	Gay

MATHEW, Binny, et al. HateXplain: A benchmark dataset for explainable hate speech detection. arXiv preprint arXiv:2012.10289, 2020.

Used Explainability Framework

Local

Post-Hoc	forming additional operations (<i>after</i> the model has emitted a prediction) Explain a single prediction using the model itself (calculated from informa- tion made available from the model <i>as</i> <i>part of</i> making the prediction)		
Local Self- Explaining			
Global Post-Hoc	Perform additional operations to explain the entire model's predictive reasoning		
Global Self- Explaining	Use the predictive model itself to explain the entire model's predictive reasoning (<i>a.k.a.</i> directly interpretable model)		

Explain a single prediction by per-

Modern deep learning architectures like BERT ad-hoc only locally self-explaining (trust?) Table 1: Overview of the high-level categories of explanations (Section 3).

\rightarrow Extract linguistic rules with a rule-based system

Danilevsky, Marina, et al. "A survey of the state of explainable AI for natural language processing." arXiv preprint arXiv:2010.00711 (2020).

Used Explainability Framework

	Local Post-Hoc	Explain a single prediction by per- forming additional operations (<i>after</i> the model has emitted a prediction)
Rationales →	Local Self- Explaining	Explain a single prediction using the model itself (calculated from informa- tion made available from the model <i>as part of</i> making the prediction)
	Global Post-Hoc	Perform additional operations to explain the entire model's predictive reasoning
Rule Systems →	Global Self- Explaining	Use the predictive model itself to explain the entire model's predictive reasoning (<i>a.k.a.</i> directly interpretable model)

Modern deep learning architectures like BERT ad-hoc only locally self-explaining (trust?) Table 1: Overview of the high-level categories of explanations (Section 3).

 \rightarrow Extract linguistic rules with a rule-based system

Danilevsky, Marina, et al. "A survey of the state of explainable AI for natural language processing." arXiv preprint arXiv:2010.00711 (2020).

ERASER Framework

Evaluating Rationales And Simple English Reasoning

Young et al.

- Propose several metrics for predicted rationals
- Aim to capture two dimensions:
 1) How well rationales by models align with human rationales
 2) To which degree the rationales influence the prediction
- Provide an open source implementation on Github
- (Also provide example datasets & a leaderboard)

https://www.eraserbenchmark.com/

→ "Plausibility"
 > "Faithfulness"

Agreement with human rationales

Interpretation: How convincing the interpretation is to humans Two variants: discrete and "soft" selection

Discrete:

Intersection-Over-Union(IOU): for two spans, Partial match = overlap/union > threshold [0.5] IOU F1 = F1Score(all partial matches) Token F1 = (token-level precision & recall)

Continuous:

Area Under the Precision-Recall Curve (AUPRC) Sweeping a threshold over token scores

$$F_1 = 2 * \frac{precision * recall}{precision + recall}$$

DEYOUNG, Jay, et al. ERASER: A benchmark to evaluate rationalized NLP models. arXiv preprint arXiv:1911.03429, 2019.

Influence of the rationales to the prediction

Interpretation: How accurately it reflects the true reasoning process of the model Two metrics,

say **m(xi)** ist the probability that sentence xi is classified offensive **m(ri)** is the probability that the <u>predicted</u> rationales ri alone are classified offensive **m(xi\ri)** is the sentence with removed <u>predicted</u> rationales

Comprehensiveness:

(Were all features needed to make a prediction?)

- = m(xi) m(xi\ri)
- The higher, the better (negative: model became more confident w/o rationales)

Sufficiency:

(Do extracted rationales contain enough signal?)

- = m(xi) m(ri)
- The lower, the better

Faithfulness (cont.)

How to remove continous rationales?

 \rightarrow Remove top k rationales (threshold)

• Aggregation:

- Motivated by saliency maps
- Group rationals in k=5 bins
- rik = rationale i up to and including bin k
- Top 1%, 5%, 10%; 20%, 50%
- "Area Over the Perturbation Curve"

$$\frac{1}{|\mathcal{B}|+1} \left(\sum_{k=0}^{|\mathcal{B}|} m(x_i)_j - m(x_i \backslash r_{ik})_j\right)$$

Plausibility IOU F1 : 0.1255215896343243 Token F1 : 0.4439984064957904 AUPRC : 0.5886258502340532

Faithfulness Comprehensiveness : 0.6083561550950038 Sufficiency 0.15281228368862493

If e.g. soft rationale is not in the input file (see later):

ERASER skips calculation

DEYOUNG, Jay, et al. ERASER: A benchmark to evaluate rationalized NLP models. arXiv preprint arXiv:1911.03429, 2019.

Applying the metrics to POTATO

Plausibility:

- Currently, hard predictions are implemented for IOU F1 & Token F1
- The predicted rationales are all words of matching rules
 → ["into", "drop", "entity1", "entity2"]

Faithfulness:

- The probability function **m(x)** is between 0 and 1, deep learning logits are continous
- However, a potato rule matches either fully or not
- Single sentence faithfulness metrics are either 0 or 1 (Smoothed out by aggregation)

ERASER Input

Format

- jsonl
- Slightly different formats for ground truth and prediction
- Text is not in the jsonl but in the docs folder

ERASER Input (Ground Truth)

```
"annotation_id": "13851720_gab",
"classification": "hatespeech",
"evidences": [
      "docid": "13851720_gab",
      "end sentence": -1,
      "end token": 17,
      "start sentence": -1,
      "start token": 13,
      "text": "19424 11382 3489 2653"
    },
      "docid": "13851720 gab",
      "end sentence": -1,
      "end token": 28,
      "start sentence": -1,
      "start token": 21,
      "text": "4654 3334 19269 1996 2175 10139 2213"
"query": "What is the class?",
"query_type": null
```

https://www.eraserbenchmark.com/

ERASER Input (Prediction)

```
"annotation id": "13851720 gab",
"classification": "hatespeech",
"classification scores": {
  "hatespeech": 0.9781582355499268,
  "normal": 0.0033476415555924177,
  "offensive": 0.018494125455617905
"rationales": [
    "docid": "13851720 gab",
    "hard rationale predictions": [
        "end token": 7,
        "start token": 6
        "end token": 37,
        "start token": 36
    "soft_rationale_predictions": [
      0.018977651372551918,
      0.018510917201638222,
      0.018933551385998726,
      0.4306974411010742
    ,
    "truth": 0
```

```
"sufficiency_classification_scores": {
    "hatespeech": 0.9711454510688782,
    "normal": 0.004742590710520744,
    "offensive": 0.024111928418278694
},
"comprehensiveness_classification_scores": {
    "hatespeech": 0.005441979970782995,
    "normal": 0.9660893678665161,
    "offensive": 0.028468627482652664
```

https://www.eraserbenchmark.com/

Calling ERASER

ERASER structure:

Just to important files: rationale_benchmark/metrics.py Contains main() function rationale_benchmark/util.py Contains documentation

Current way to call ERASER:

- Local copy in potato/scripts folder
- main() needs arguments
- Copied the content of the main function to runEvaluation
- Parameters are arguments

In evaluation script:

```
print_classification_report(df, stats)
print("-------")
matched_result = evaluator.match_features(df, features[target])
subgraphs = matched_result["Matched rule"]
labels = matched_result["Predicted label"]
data_tsv_to_eraser(file)
prediction_to_eraser(file, subgraphs, labels, labels, labels, target)
call_eraser("./hatexplain", "val", "./hatexplain/val_prediction.jsonl")
print("------")
```

import rationale_benchmark.metrics as eraser

eraser.runEvaluation("None", # neutralclassname

data dir=datadir, # data dir

split=testtrainorval, # split

strict=False) # strict
#iou thresholds=[0.5], # iou

results=pathtopredictions, # results

score file=datadir+"/eraser output.json", # score

#aopc thresholds=[0.01, 0.05, 0.1, 0.2, 0.5]) # aopc

Applying the metrics to HateXplain

Rationales

- Only available for hatespeech/offensive classes
- HateXplain just discards all non-hate ground truth data

_
"classification": "hatespeech",
"classification": "offensive",
"classification": "offensive",
"classification": "offensive",
"classification": "offensive",
"classification": "hatespeech",
classification": "hatespeech",
"classification": "hatespeech",
"classification": "hatespeech",
"classification": "hatespeech",

Dirty hack

Add normal label in metrics.py

2 years ago

• Hardcoded normal class in ERASER metrics.py

286 + labels +=['normal']

Advantage of discarding:

• We can in theory now directly compare our results to the HateXplain models

First Results of Plausibility

Model	IOU F1	Token F1	Model [Token Method]	IOU F1↑	Exp Plausibility Token F1↑	olainability AUPRC↑
(BERT HXPlain) (test.jsonl)	(0.126)	(0.444)	CNN-GRU [LIME] BiRNN [LIME] BiRNN-Attn [Attn] BiRNN-Attn [LIME]	0.167 0.162 0.167 0.162	0.385 0.361 0.369 0.386	0.648 0.605 0.643 0.650
Rules: sexism val.tsv	0.279	0.165	BiRNN- HateXplain [Attn] BiRNN- HateXplain [LIME] BERT [Attn] BERT [LIME] BERT- HateXplain [Attn]	0.222 0.174 0.130 0.118 0.120	0.506 0.407 0.497 0.468 0.411	0.841 0.685 0.778 0.747 0.626
Rules: homophobia	0.090	0.047	BERT-HateXplain [LIME]	0.112	0.452	0.722

→ sanity check:
 HateXplain BERT ran on original
 hatespeech/offensive/normal task

secondary val.tsv

- \rightarrow Rules ran on <target>/None task
- PS: regarding testing: val is shorter than train

→ AUPRC would need continuous rationale prediction (possible if smoothed out)

- \rightarrow scores will be better with multi-rule matching
- \rightarrow only single word nodes are returned, no , |' yet

(see later)

Important:

Multi-rule matching
 Predicted labels to calculate Faithfulness
 Support , | ' (see homophobia rules)

Further Experiments:

1) Rationale smoothing to get AUPRC

2)Faithfulness: Different ways of masking words (<UNK>, parsing, etc.)

3)Integration into Potato?

4) Evaluate human annotators

5)Look at normalized ERASER metrics (Carton et al.)

6) Reimplement ERASER metrics

7)Create rule system for another target

8)Extend "HASOC 100% dataset" with rationales

Prediction:

```
[1, 0, 0, 0, 1, 0, 0,...]

→

[0.2324, 0.0111, 0.0024, 0.0032, 0.5342, ...]
```


→ soft_prediction AUPRC score

m(xi\ri)

• xi\ri = ???

- 1) Swap rationales with e.g. <UNK> token and parse again
- 2) Mask nodes from existing graph
- 3) Remove from rationales sentence and parse again

- Currently, evaluate_HateXplain calls extern ERASER script
- Integration of evaluate_HateXplain.py: leave in scripts folder
- Create more general evaluate_rationals?

HateXplain already done by Carton et al.

Maybe with a smaller dataset? \rightarrow See 8)

	Faithfu Comp.↑	lness Suff.↓
—	0.316	-0.082
Evaluate if needed, idea of a metric is to compare	0.421	-0.051
	0.278	0.001
	0.308	-0.075
	0.281	0.039
	0.343	-0.075
	0.447	0.057
	0.436	0.008
	0.424	0.160
	0.500	0.004
	ass 0 ass 1 ass 2	

CARTON, Samuel; RATHORE, Anirudh; TAN, Chenhao. Evaluating and characterizing human rationales. arXiv preprint arXiv:2010.04736, 2020.

- → No need for ERASER-specific input format
- → Room for extensions: new metrics, adapted metrics

 \rightarrow Are two rule systems enough?

There is another option...

8) ... "100% dataset" rationales

- \rightarrow Was created by hand from HASOC data
- \rightarrow Hate annotation is subjective
- \rightarrow Inconsistent annotations were removed
- \rightarrow 200 entries
- \rightarrow Includes a rule system with 100% precision

Result of using all the rules: Precision: 1.000, Recall: 0.855, Fscore: 0.922

Add rationales by hand too and run ERASER on it?

Measuring explainability in hate speech detection using the HateXplain dataset

Questions / Discussion / Thank you!

Sources:

[1] DANILEVSKY, Marina, et al. A survey of the state of explainable AI for natural language processing. arXiv preprint arXiv:2010.00711, 2020.

[2] MATHEW, Binny, et al. HateXplain: A benchmark dataset for explainable hate speech detection. arXiv preprint arXiv:2012.10289, 2020.

[3] DEYOUNG, Jay, et al. ERASER: A benchmark to evaluate rationalized NLP models. arXiv preprint arXiv:1911.03429, 2019.

[4] CARTON, Samuel; RATHORE, Anirudh; TAN, Chenhao. Evaluating and characterizing human rationales. arXiv preprint arXiv:2010.04736, 2020.

[5] KOVÁCS, Ádám, et al. POTATO: exPlainable infOrmation exTrAcTion framewOrk. arXiv preprint arXiv:2201.13230, 2022.