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DYSEN Project
Dynamic Sentiment Analysis as Emotional Compass for the Digital
Media Landscape

https://dylen.acdh.oeaw.ac.at/dysen/

Funded by:

Grant number:
MA7-737909/19

Research question: How do print media report about the Viennese politicians?

Aim of the project: Develop a tool that can detect change of emotional 
polarization of politicians in Austrian Newspapers
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Problem Statement

There is no sentiment dictionary for Austrian German in this domain

Goal: Create Austrian German language resource in the domain of news 
media and politics 
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Data sources:           Viennese politicians

Retrieved from the politician archive of Vienna (POLAR) of the Vienna City 
and State Archives.

Definition of “Viennese politician”: All members of the

• Vienna City Council

• Vienna City Senate

• Vienna State Parliament

• Vienna State Government

who were active between the 13th and the 20th parliamentary term (1983 to 
2020) = 487 politicians
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Data sources:               (1 Million Posts Corpus)

• Forum posts of 12 months from 2015 to 2016

• 3599 posts labelled for sentiment by professional forum moderators

(Schabus et al., 2017)
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Data sources: Austrian Media Corpus

• Contains Austrian print media

• Preprocessed and linguistically annotated

• Yearly updates

Our data:

• We use print media related to Vienna between 1996 and 2017

• Excluded APA1 and OTS2 articles ("Presseaussendungen")

• Text snippets of 60 tokens around the politicians' name were extracted

(Ransmayr et al.,2017)

1. https://apa.at/
2. https://www.ots.at/ 9
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Data sources: Austriacisms

Based on:

• „Variantenwörterbuch des Deutschen“ (VWB; words specific to Austria) 
(Bickel et al.,2015)

• Austriacism list of Wikipedia1

Restrictions:

The combined list is manually checked and cleaned up by linguist experts of 
our project team = 538 remaining words (pos tagged with: noun, adjective, 
verb)

1. https://de.wikipedia.org/wiki/Liste_von_austriacismen
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Crowdsourcing

Aim: Attain sentiment annotations from the crowd for:

Text snippets from the amc data that mention Viennese politicians

Austriacism list

By using:

SoSci Survey1: platform for designing surveys

Prolific2: platform to find research participants who fill out the survey

1. https://www.soscisurvey.de/
2. https://www.prolific.co/
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Crowd sourcing:           Austrian Media Corpus

• Each item labelled ≥ 3 times

• Majority vote (equal number per class = rated as neutral)

• Three classes: positive, neutral, negative

• Survey:
• 100 randomly selected text snippets
• +24 items for quality control (≥75% correct)

Restricted annotators by:

• Current Country of Residence (Germany, Austria, Switzerland)

• Nationality (Germany, Austria, Switzerland)

• First Language (German)
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Crowd sourcing:           Austrian Media Corpus

1st annotation run (70 annotators after excluding the 14 bad ones)

• 2376 items

• Fleiss-Kappa: 0.295 (fair inter-annotator agreement)

2nd annotation run (88 annotators after excluding the 15 bad ones)

• 2970 items

• Fleiss-Kappa: 0.283 (fair inter-annotator agreement)

Output: 5346 labelled text snippets including Viennese politicians
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Crowd sourcing: Austriacisms (Survey 1)

Survey 1 (Preselection):

• Over 1 600 words in total

• 500 words per survey

• +25 words for quality control

• Four options (positive, neutral, 
negative, unknown)

Restricted annotators by:

• Current Country of Residence 
(Austria)

• Nationality (Austria)

• First Language (German)
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Crowd sourcing: Austriacisms (Survey 2)
Survey 2:

• Best-worst-scaling (BWS) method1

(Kiritchenko & Mohammad, 2017)

• 1074 tuples

• 130 tuples per survey

• +20 tuples for quality control (≥75%
correct)

• Restricted annotators by:

• Current Country of 
Residence (Austria)

• Nationality (Austria)

• First Language (German)

181. Calculation script provided by Mohammad: http://saifmohammad.com/WebPages/BestWorst.html

http://saifmohammad.com/WebPages/BestWorst.html


Crowd sourcing: Austriacisms
• 34 annotators after excluding the 6 bad ones

• Output: 4417 tuples (BestItem, WorstItem)
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Methods: Data Annotation
(Autriacisms)
Best-worst-scaling (BWS) method (Kiritchenko & Mohammad, 2017)

split-half reliability:

• Spearman correlation: 0.9159 +/- 0.0051

• Pearson correlation: 0.9164 +/- 0.0049

Output: 537 words
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Methods: Data Annotation
(amc, derStandard)
SPLM method (Almatarneh & Gamallo, 2018) 

Algorithm to generate a sentiment score based on labelled text items.

Remark: “neutral” sentiment labels of the derStandard dataset were 
converted to “positive”. This was required to the high imbalance in the 
dataset.
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amc
„Lemma“ and „POS“ based on
the amc corpora1 (RFTagger/Tiger corpus )

derStandard
„Lemma“ and „POS“ based on
spacy („de_core_news_sm“)

Methods: Data Annotation
(amc, derStandard) preprocessing (1)

LemmaPOS

1. https://amc.acdh.oeaw.ac.at/dokumentation/korpusinhalt-attribute/#pos

example based on the derStandard dataset

24



Methods: Data Annotation
(amc, derStandard) preprocessing (2)

Map result of „POS“ tagging to „wordnet“ tags to reduce the number of
tags: wordnet tag

POS wordnet

am
c

d
e

rS
ta

n
d

ar
d
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Methods: Data Annotation
(amc, derStandard) result (1)

negative wordspositive words

D(w): sentiment score
D(w) [-1;+1]
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Methods: Data Annotation
(amc, derStandard) result (2)

D(w) = sentiment score
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Methods: Postprocessing (1)

amc with derStandard after applying SPLM Austriacisms after applying BWS

1. https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html

Scaling to [-1,+1] with „max_abs_scaler of sklearn“1 before merging
the dictionaries
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Methods: Postprocessing (2)

Comparison of words which occur in both dictionaries 
(amc+derStandard vs austriacisms):

Restrictions:

During merging duplicates will be removed by using the Austriacism words prioritized.
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Results

amc data only amc with derStandard
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Results

amc + derStandard + austriacisms

Scaled to [-1,+1] with 

„max_abs_scaler of sklearn“1

1. https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html
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Evaluation (1)

Method: Kfold (5 folds), cross_validation, SVC(kernel=‘linear‘)

Features:

• Count of positive words in text-item

• Count of negative words in text-item

• proportion

dataset after feature calculation
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Evaluation (2)

Evaluate the dictionary which is based on amc, derStandard and the 
austriacism list against "derStandard" and "DYSEN“:

1st against derStandard only

2nd against amc only
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Discussion (1)

• Difficult to label news media (mainly “neutral” texts), as a result the inter-
annotator agreement is not as high as in other domains by using similar methods

• Limited text length

• No external dataset for evaluation

Future work:

• Improvement of the text extraction by using Aspect-based sentiment analysis

• Investing more money to label a bigger dataset

• Expanding the scope of the project to all politicians and media in Austria
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Discussion (2)

https://dysen-tool.acdh-dev.oeaw.ac.at/ (work in progress)

Tool created as part of the DYSEN project which uses the ALPiN dict.:
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ALPiN Dictionary (1)

Current research topic in our DYSEN project

Currently there is no dictionary based on Austrian-German in the domain of news 
media and politics

Based on the „Austrian Media Corpus“ phrases related to Viennese politicians of 
the last 20 years

Labelled dataset created via crowd-sourcing (prolific) by Austrian German native 
speakers

Dictionary generated by applying the SPLM (Almatarneh & Gamallo, 2018) 
algorithm

„Austrian Language Polarity in Politics and Newspapers“
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ALPiN Dictionary (2)

Incorporation of Austriacisms by using the best-worst-scaling (BWS) 
to improve the quality of the labels (Kiritchenko & Mohammad, 2017)

Incorporation of derStandard (popular Austrian news media) forum 
posts

Diverse independent data-sources (amc, derStandard, austriacisms)

Resulting resource and paper will be submitted/published by the 
end of the year

„Austrian Language Polarity in Politics and Newspapers“
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