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Interpretability, Explainability

From Benedikt's slides:
» Interpretability is the degree to which a human can
understand the cause of a decision (Tim Miller)

» Faithfulness: faithful interpretation is one that accurately
represents the reasoning process behind the model’s
prediction.

» LIME, ELI5, SHAP, etc..

» Traditional ML algorithm can be interpretable, but we still
have strugles with black-box DL models



LIME [Ribeiro et al., 2016]
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Text with highlighted words

m: johnchad@triton.unm @l (jchadwic)

Sllbjcct Another request for Darwin Fish
Organization: University of New Mexico, Albuquerque

Lines:
T ——

Hello Gang,

IRGEE [ been some notes recently asking where to obtain the
DARWIN fish.
‘This is the same question 1 il and 1 [flil not seen an answer on

the
net. If anyone has a contact please post on the net or email me.
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What is attention?

» In broad terms attention pays greater focus to certain parts of
the data

» Attention can be classified into two classes

» General attention
» between input and output elements
» general seq2seq architectures

» Self-attention

» within the input elements
» used in Transformer architectures [Vaswani et al., 2017]
(BERT, RoBERTa, ALBERT, etc..)



General seq2seq

» Encoder-Decoder model, popularized in Machine Translation

» Both the Encoder and the Decoder part are based on RNN
structures
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General seq2seq problems
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Seq2seq with Attention
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» Attention is an additional layer on top of the encoder RNN
structure

Important

] = 1 =1 =1 ,mee]

o oo

Con) (o) G ) (o)

Unimportant



Seq2seq with Attention

» Attention is an additional layer on top of the encoder RNN
structure

» It will work as a " Query” for the decoder

Important

feeemw) [ = 1 (=1 =1 ,ome]

o oo

Con) (o) G ) (o)

Unimportant



Seq2seq with Attention
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» It will work as a " Query” for the decoder

P It will assign higher weights to important words
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Seq2seq with Attention

» Attention is an additional layer on top of the encoder RNN
structure

» It will work as a " Query” for the decoder
P It will assign higher weights to important words

P> These weights assign a score directly to each input

Important
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Seq2seq with Attention
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Self attention

> Self attention assigns weights to each input word
» For each word we query the most important words in context

» Used mostly for classification and language modeling tasks
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Types of attention

» We have many types of attention
> 2 different major types of Attention

» Bahdanau attention (additive attention)
[Bahdanau et al., 2015]

» Luong attention (multiplicative attention) [Luong et al., 2015]
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The process is the following?:

1The images are from this great blog
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The process is the following?:
» Producing the hidden states from the encoder
» Calculating alignment scores
» Softmaxing the alignment scores
» Calculating the context vector
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Bahdanau attention

The process is the following?:
» Producing the hidden states from the encoder

Calculating alignment scores

>

» Softmaxing the alignment scores
» Calculating the context vector
>

Decoding the output

1The images are from this great blog


https://blog.floydhub.com/attention-mechanism/

Calculating alignment scores

SCOrézlignment = Wcombined ‘tanh (Wdecoder H decoder +Wencoder H encoder)



Calculating alignment scores

Whecoder * Hpecoder Wencoder * Hencoder

Decoder  Wpecoder Encoder
Hidden {LinearLayer) Outputs

WEncoder

(Linear Layer)



Calculating alignment scores

Whecoder * Hpecoder ~ Wencoder * Hencoder

tanh =

Above outputs combined and tanh applied




Calculating alignment scores

B — B

WAIignment Alignment
Scores



Softmaxing the alignment scores

——
Softmax( -) 027 0.73

Alignment Attention
Scores Weights



Calculating context vector

Attention Context Vector

Encoder Weights

Outputs
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Attention is all you need [Vaswani et al., 2017]

» Recurrent neural networks are hard to parallelize and train

» Transformer-based architectures replace RNN-s with
self-attention and Linear layers

> State-of-the art methods in most of the NLP tasks

» BERT [Devlin et al., 2019], ALBERT [Lan et al., 2019],
RoBERTa [Liu et al., 2019], etc..



The architecture

pictures are taken from this post
» Self-attention in both the encoder and decoder

» Encoder-Decoder attention can be still present

DECODER 1
Feed Forward
NIC 2
ENCODER T
[ Feed Forward J [ Encoder-Decoder Attention
Y
[ Self-Attention Self-Attention

f


http://jalammar.github.io/illustrated-transformer/

The architecture

P Attention score is calculated for each word against the other
words
ENCODER #2 K\

ENCODER#1 /7, O\
Feed Forward Feed Forward
Neural Network Neural Network
Self-Attention )
2 T T 7
x: (IR x2 [T
Thinking

Machines




The architecture

» We have Query, Key, Value trainable matrices

Input Thinking Machines
Embedding X xo [
Queries a [T 1] N woa
Keys o [T T WK

Values vl 1] v ] wv



The architecture

1. Dot product of the query vector with the key vector of the
respective word we're scoring

2. Softmax and multiply with the value vector

3. Sum the weighted value vectors

Input Thinking Machines
x [ x2 (IR

Queries o OO0 e OO

Keys T oo

Values v [ S

Score qieki= qreke =

Divide by 8 (v/d; )

Softmax

Softmax
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The architecture
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Attention as explanation

» Various attention mechanisms exist
» Each has the same high-level goal

» calculate nonnegative weights for the input components
» it should sum to 1

» multiply the weights with the representations

» sum the resulting vectors into a single representation

> Attention calculates a distribution over the inputs

» It has been used as an interpretation of the model
[Wang et al., 2016, Lee et al., 2017, Lin et al., 2017,
Ghaeini et al., 2018]



Attention as explanation

» We can look at the local weights for each prediction

» The weights can serve as an explanation for that specific
decision
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Attention as explanation?

Multiple works have appeared that try to understand what these
attention weights actually communicate:

» |s Attention Interpretable? [Serrano and Smith, 2019]
> Attention is not explanation [Jain and Wallace, 2019]
> Attention is not not explanation [Wiegreffe and Pinter, 2019]
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Is Attention Interpretable?

» Paper accepted to: Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics

» Often assumed that attention identifies information that
models found important

» The paper tests this hypothesis on text classification datasets

» If a model is interpretable, is must suggest an explanation and

ensure that the explanation represents the true reason for the
decision



The setting

P Take the attention weights as ranking: 7

» If i € 7 is higher than j € 7 then / is more important to the
output

» Question: Does 7 faithfully describe the output?
[Ghorbani et al., 2018]

» Method: Select 7/ C 7

» Run the model without modification and with modification of
the attention weights

» Modifications: Zero out weights and re-normalize the
distribution
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The setting

» Take the attention weights as ranking: 7

» If i € 7 is higher than j € 7 then i is more important to the
output

» Question: Does 7 faithfully describe the output?
[Ghorbani et al., 2018]

» Method: Select 7/ C 7

» Run the model without modification and with modification of
the attention weights

» Modifications: Zero out weights and re-normalize the
distribution



The setting

Input [wi w2 w3 wa ws we w7 wg
v

Zero out
fuflcioodely some weights
Computed ¥ R
attention | )' n ‘
distribution l Renormalize
12
Part 2 of model Part 2 of model
il | | Softmax
riginal t g
softmax I (m z‘s‘lt:;’ 9z
output p » modified
attention

lmpommce calculated from change in output

Figure 1: Our method for calculating the importance
of representations corresponding to zeroed-out atten-
tion weights, in a hypothetical setting with four output
classes .



The setting

They trained HAN (Hierarchical Attention Network) based neural
networks on classification datasets.

Dataset Av. # Words (s.d.) Av.#Sents. (s.d.) # Train. + Dev. # Test # Classes

Yahoo Answers 104 (114) 6.2 (59 1,400,000 50,000 10
IMDB 395 (259) 16.2 (107 122,121 13,548 10
Amazon 73 @8) 43 (26 3,000,000 650,000 5
Yelp 125 (109) 7.0 (5.6 650,000 50,000 5

Table 1: Dataset statistics.



Goals

The paper has two main goals:

» How p and q (label distributions) correlate - Jensen-Shannon
(JS) divergence between output distributions

> How the argmaxes of p and q differ, indicating a decision flip



Attention weight importance

P> ix € 7T is the component with the highest attention, aj, is its
attention

» Compare the output with removing i* and with removing r, a
randomly drawn variable

» Use JS divergence on the output distributions
P> Plot this quantity against aj, — a,

AJS = IS(p.qqi-y) — IS(P.ay,y)



Attention weight importance

Difference in attention weight
magnitudes vs. AJS for HANrnns

Dataset = Yahoo Dataset = IMDB
0.4

0.2

0.0

Dataset = Amazon Dataset = Yelp
0.4

0.2

Difference in ]S Divergences from
Original Output Distribution

0.0
0.0 0.2 04 06 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0

Difference in Zeroed Attention Weight Magnitudes

Figure 3: Difference in attention weight magnitudes
versus AJS for HANmns, comparable to results for the
other architectures; for their plots, see Appendix A.2.
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Decision flips

» The second experiment of the paper looks at the argmaxes of
the decisions, indicating a decision flip

» Zero out o, and see if there was a decision flip

» Zero out a, and see if there was a decision flip



Decision flips

v

The second experiment of the paper looks at the argmaxes of
the decisions, indicating a decision flip

Zero out «;, and see if there was a decision flip
Zero out «a, and see if there was a decision flip

Result: in the majority of the cases, zeroing out «;, does not
result in a decision flip



Decision flips

Remove i*: Decision flip?

Table 2: Percent of test instances in each decision-flip

Remove random: Decision flip?

Yahoo

Yes No

Yes 8.7
No 89.6

Amazon

Yes No

Yes 7.6
No 87.1

IMDB
Yes No

Yes 12.2

No 84.2
Yelp

Yes No

Yes 8.9

No 87.7

indicator variable category for each HANrnn.
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Importance sets

» The authors also investigated a set of components in 7

» How multiple attention weights perform together
» Setup:
» rank attentions by their weights

» determine a minimal set that causes a decision flip
P the top items are expected to have this characteristic



Importance sets
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Fraction of Original Attention Weights Removed
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Fractions of Original Attention Weights Removed Before First Decision Flip

Under Different Importance Rankings

HANrnns
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. Random
= Attention
£ Gradient
£ Attn + Grad TTI l
FLANrnns
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Figure 5: The distribution of fractions of items removed before first decision flips on three model architectures
under different ranking schemes. Boxplot whiskers represent the highest/lowest data point within 1.5 IQR of the
higher/lower quartile, and dataset names at the bottom apply to their whole column. In several of the plots, the
median or lower quartile aren’t visible; in these cases, the median/lower quartile is either 1 or very close to 1.



Conclusion

the highest attention weights fail to have a large impact

in multi-weight tests, we see that attention weights often fail

to identify the sets of representations most important to the
model’s final decision

in the papers settings attention is not an optimal method of
identifying relevant input elements responsible for the output

Attention may yet be interpretable in other ways, but as an
importance ranking, it fails to explain model decisions.
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Conclusion

P the highest attention weights fail to have a large impact

P in multi-weight tests, we see that attention weights often fail
to identify the sets of representations most important to the
model’s final decision

» in the papers settings attention is not an optimal method of
identifying relevant input elements responsible for the output

> Attention may yet be interpretable in other ways, but as an
importance ranking, it fails to explain model decisions.



Attention is not explanation

The main claims of the paper:



Attention is not explanation

The main claims of the paper:

» Correlation between standard feature importance and
attention weights are weak



Attention is not explanation

The main claims of the paper:

» Correlation between standard feature importance and
attention weights are weak

» Randomly permuting the attention weights doesn't change
the output significantly



Attention is not explanation

The main claims of the paper:

>

>

Correlation between standard feature importance and
attention weights are weak

Randomly permuting the attention weights doesn't change
the output significantly

"These results suggest that while attention modules
consistently yield improved performance on NLP tasks, their
ability to provide transparency for model predictions is
questionable”



The setting

» Data: Common NLP benchmarks like IMdB, 20 News Groups,
SST, etc.. (text classification tasks using standard encoders
with attention mechanism)

» Empirical analysis between gradient base feature importance
and attention

» Also between 'leave-one-out’ (LOO) and attention

» Generate counterfactual attention distributions that doesn't
change the output -; attention doesn’t provide unique
explanation
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Experiment 1

» Correlation between attention and gradient base importance
(1) and LOO (7i00)

» (These methods are also insufficient for interpreting DL
methods, but they might provide feature importance)
» Measures:

» Gradient base methods: Total Variation Distance,
JS-Divergence
» LOO: model confidence before and after leaving a feature out



Experiment 1

Result: Not really

Gradient (BiLSTM) 7, Gradient (Average) 7, Leave-One-Out (BiLSTM) 710,

Dataset Class _ Mean £ Std. __ Sig. Frac. _Mean £ Std. _ Sig. Frac. _ Mean = Sd. Sig. Frac.
SST 0 0.34 £0.21 0.48 0.61 +£0.20 0.87 0.27 £0.19 0.33
1 0.36 £0.21 0.49 0.60 +0.21 0.83 0.32£0.19 0.40
IMDB 0 0.44 £0.06 1.00 0.67 +£0.05 1.00 0.34 £0.07 1.00
1 0.43 £0.06 1.00 0.68 = 0.05 1.00 0.34 £0.07 0.99
ADR Tweets 0 0.47 £0.18 0.76 0.73+£0.13 0.96 0.29 £0.20 0.44
1 0.49 £0.15 0.85 0.72 +£0.12 0.97 0.44 £0.16 0.74
20News 0 0.07 £0.17 0.37 0.79 £ 0.07 1.00 0.06 £ 0.15 0.29
1 0.21 £0.22 0.61 0.75 + 0.08 1.00 0.20 £ 0.20 0.62
AG News 0 0.36 £0.13 0.82 0.78 £ 0.07 1.00 0.30 £0.13 0.69
1 0.42£0.13 0.90 0.76 £ 0.07 1.00 0.43£0.14 0.91
Diabetes 0 0.42 £0.05 1.00 0.75 £ 0.02 1.00 0.41 £0.05 1.00
1 0.40 £0.05 1.00 0.75 £ 0.02 1.00 0.45 £ 0.05 1.00
Anemia 0 0.47 £0.05 1.00 0.77 £ 0.02 1.00 0.46 £ 0.05 1.00
1 0.46 £ 0.06 1.00 0.77 £ 0.03 1.00 0.47 £ 0.06 1.00
CNN Overall  0.24 £0.07 0.99 0.50 £0.10 1.00 0.20 £0.07 0.98
bAbI 1 Overall  0.25+0.16 0.55 0.72+0.12 0.99 0.16 £0.14 0.28
bAbI 2 Overall  —0.02 £ 0.14 0.27 0.68 + 0.06 1.00 —0.01 £0.13 0.27
bAbI 3 Overall 0.24 £0.11 0.87 0.61 +0.13 1.00 0.26 £ 0.10 0.89
SNLI 0 0.31 £0.23 0.36 0.59 £0.18 0.80 0.16 £ 0.26 0.20
1 0.33 £0.21 0.38 0.58 £0.19 0.80 0.36 £ 0.19 0.44
2 0.31£0.21 0.36 0.57 £0.19 0.80 0.34 £0.20 0.40

Table 2: Mean and std. dev. of correlations between gradi t importance and altenlion
weights. Sig. Frac. columns report the fraction of instances for which this lation is statisti

note that IhlS largely depends on input length, as correlation does tend to exist, just weakly. Encodem are denoted
y. These are rep ive results; ive results for all encoders are available to browse online.
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Experiment 2

» Scrambling the attention weights

P Re-assign each value to a randomly sampled input
P> Also, generate an adversarial attention distribution

» set of attention weights maximally distinct from the original
weights
» but yields the same prediction



Experiment 2

after 15 minutes watching the
movie i was asking myself what to
do leave the theater sleep or try
to keep watching the movie to
see if there was anything worth i
finally watched the movie what a
waste of time maybe i am nota 5
years old kid anymore

original o

f(z]|a,0) = 0.01

after 15 minutes watching the
movie i was asking myself what to
do leave the theater sleep or try
to keep watching the movie to
see if there was anything worth i
finally watched the movie what a
waste of time maybe i am not a 5
years old kid anymore

adversarial &v

f(z|a,0) =0.01

Figure 1: Heatmap of attention weights induced over
a negative movie review. We show observed model at-
tention (left) and an adversarially constructed set of at-
tention weights (right). Despite being quite dissimilar,
these both yield effectively the same prediction (0.01).



Experiment 2

> Attention Permutation: Authors were able to randomly
permute attention weights without significantly changing the
output

» Adversarial Attention: Authors also were able to perturb the
original attention without significantly affecting the output



Attention is not not explanation

» One month later a work by Sarah Wiegreffe and Yuval Pinter
has appeared [Wiegreffe and Pinter, 2019]

> Raises issues regarding the experiments of
[Jain and Wallace, 2019]



Issues

Kendall-tau measures are unvaforable to contextual models -
might be the reason why averaged models performed better

Attention scores are claimed to provide an explanation, not
the explanation

"my explanation for why it’s raining today may involve the
ocean streams, atmospheric pressure, cloud formations. An
alternative explanation could cite anger from the god of

thunder. It yields the same prediction, but | wouldn’t call it
equally plausible.”
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Issues

» Kendall-tau measures are unvaforable to contextual models -
might be the reason why averaged models performed better

> Attention scores are claimed to provide an explanation, not
the explanation

> "my explanation for why it’s raining today may involve the
ocean streams, atmospheric pressure, cloud formations. An
alternative explanation could cite anger from the god of
thunder. It yields the same prediction, but | wouldn't call it
equally plausible.”



Conclusion

» Attention can mean a lot of things

> Attention as a sanity check: the first paper cares about this.
> "we, who built the (say) translation model, have an idea which
words in the source text “should” map to which words in the

target text, and it would be a neat demo if a component in the
model shows us exactly the patterns we expect.”

> Attention as a tool: the second cares about this

» "the model [...] tells us through attention which part of the
text caused it to make the prediction.”
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Thank you for your attention!

» https://medium.com/@byron.wallace/thoughts-on-attention-
is-not-not-explanation-b7799c4c3b24

» https://medium.com/@yuvalpinter/attention-is-not-not-
explanation-dbc25b534017

» http://jalammar.github.io/illustrated-transformer/
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