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Natural Language Inference

Natural Language Inference (NLI) is the task of defining the semantic
relation between a premise and a conclusion (or hypothesis)
The premise can entail, contradict or be neutral to the hypothesis
We mean entailment when a human reading the premise would infer
that the hypothesis is true (Dagan, Glickman, and Magnini, 2006)
Increasing popularity in creating high-performing datasets
Necessary step towards Reasoning and Natural Language
Understanding (NLU) (Condoravdi et al., 2003; Nangia et al., 2017)
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Natural Language Inference

entailment

A young family enjoys feeling ocean waves lap at their feet.
A family is at the beach

contradiction

There is no man wearing a black helmet and pushing a bicycle
One man is wearing a black helmet and pushing a bicycle

neutral

An old man with a package poses in front of an advertisement.
A man poses in front of an ad for beer.

Table: NLI examples
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Datasets - Early - FraCas

FraCas (Cooper et al., 1996) (only 874 unique sentences, and the data
is constructed)
It contains 346 "problem" types
But covers lot of inference classes
The examples are mostly logical inference cases
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Datasets - Early - FraCas

"Yes" examples
1 premise - Just one accountant attended the meeting.
2 hypothesis - Some accountant attended the meeting.

"No" examples
1 premise - Exactly two lawyers and three accountants signed the

contract.
2 hypothesis - Six lawyers signed the contract.

"Unknown" examples
1 premise - Either Smith, Jones or Anderson signed the contract.
2 hypothesis - Jones signed the contract.
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Datasets - Early - PASCAL

The seven Recognizing Textual Entailment (RTE) challenge: (Dagan,
Glickman, and Magnini, 2006; Bar-Haim et al., 2006; Giampiccolo
et al., 2007; Dagan, Dolan, et al., 2010; Luisa Bentivogli et al., 2009;
L. Bentivogli et al., 2011)
Naturally occuring data, and then hypothesis based on the premise
They suffer from incorrect inference (Zaenen, Karttunen, and Crouch,
2005)
Still very small (around 1000 pairs)
First step towards including "non-logical" inferences and presupossed
information
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Datasets - Early - PASCAL

Entailment
1 premise - Bill murdered John.
2 hypothesis - Bill killed John.

Not entailment
1 premise - Bill didn’t murder John
2 hypothesis - Bill didn’t kill John

Entailment
1 premise - Bill didn’t kill John
2 hypothesis - Bill didn’t murder John.
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Datasets - Early - PASCAL - Problems (Zaenen, Karttunen,
and Crouch, 2005)

1 premise - Green cards are becoming more difficult to obtain.
2 hypothesis - Green card is now difficult to receive.

entailment

1 premise - Hippos do come into conflict with people quite often
2 hypothesis - Hippopotamus attacks human

entailment
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Datasets - Early - PASCAL - Problems (Zaenen, Karttunen,
and Crouch, 2005)

1 premise - South Korean’s deputy foreign minister says his country
won’t change its plan to send 3000 soldiers to Iraq.

2 hypothesis -South Korea continues to send troops

entailment

1 premise - The White House failed to act on the domestic threat from
al Qaida prior to September 11, 2001.

2 hypothesis - White House ignored the threat of attack
entailment
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Datasets - SICK Marelli et al., 2014

English corpus of 9840 sentence pairs (rich in syntactic and semantic
phenomena)
Dataset for Distributional Semantic Models (DSMs)
Don’t require dealing with named entities, temporal phenomena, etc..
They made an effort to reduce the needed encyclopedic
world-knowledge
It was created from captions of pictures
Sentences were normalized
In (Kalouli, Real, and Paiva, 2017) they showed the logical fallacies in
the SICK dataset
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Datasets - SICK - The process

Annotation process
Each normalized sentence was used to generate three new sentences based
on a set of rules, such as adding passive or active voice, adding negations,
etc. Each sentence was then paired with all of those three generated
sentences. A native speaker eliminated odd and ungrammatical sentences.
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Datasets - SICK

The turtle followed the fish -> The turtle is following the fish

Sentences were expanded to
The turtle is following the red fish
The turtle isn’t following the fish
The fish is following the turtle.
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Datasets - SICK - Problems (Kalouli, Real, and Paiva, 2017)

Annotators were not given strict guidelines
They were not told the origin of the sentences
Contradictions in logic should be symmetric (if A is contradictory to B
then B must be contradictory to A)
611 pairs of 9840 are annotated with logical fallacies
A entails B -> B contradicts A is found
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Datasets - SICK - Problematic sentences

1 A motorcycle is riding standing up on the seat of the vehicle.
2 The black and white dog isn’t running and there is no person standing

behind
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Datasets - SICK - Problems

Example from SICK
premise - An Asian woman in a crowd is not carrying a black bag
hypothesis - An Asian woman in a crowd is carrying a black bag

A contradicts B but B is neutral to A
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Datasets - SICK - Problems

1 premise - The lady is cracking an egg into a bowl.
2 hypothesis - The lady is cracking an egg into a dish.

A entails B, but B is contradictory to A

1 premise - The man is aiming a gun.
2 hypothesis - The man is drawing a gun.

A entails B, but B is contradictory to A
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Datasets - SICK - Problems

1 premise - The lady is cracking an egg into a bowl.
2 hypothesis - The lady is cracking an egg into a dish.

A entails B, but B is contradictory to A

1 premise - The man is aiming a gun.
2 hypothesis - The man is drawing a gun.

A entails B, but B is contradictory to A

Adam Kovacs (TU-Wien) NLI May 24, 2021 17 / 38



Datasets - SICK - Problems

1 premise - The lady is cracking an egg into a bowl.
2 hypothesis - The lady is cracking an egg into a dish.

A entails B, but B is contradictory to A

1 premise - The man is aiming a gun.
2 hypothesis - The man is drawing a gun.

A entails B, but B is contradictory to A

Adam Kovacs (TU-Wien) NLI May 24, 2021 17 / 38



Datasets - SICK - Problems

1 premise - The lady is cracking an egg into a bowl.
2 hypothesis - The lady is cracking an egg into a dish.

A entails B, but B is contradictory to A

1 premise - The man is aiming a gun.
2 hypothesis - The man is drawing a gun.

A entails B, but B is contradictory to A

Adam Kovacs (TU-Wien) NLI May 24, 2021 17 / 38



Datasets - SNLI, MultiNLI

More recents set have exploded to some hundred thousand examples
Enabling the training of Deep Neural Models
SNLI (S. R. Bowman et al., 2015)
Multi-NLI (Williams, Nangia, and S. Bowman, 2018)
These training sets contain annotation artifacts (Gururangan et al.,
2018)
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Datasets - SNLI, MultiNLI

The Stanford Natural Language Inference (SNLI) contains 570k
human-written sentence
The Multi-Genre Natural Language Inference (MultiNLI) corpus
consists of 433k sentence pairs

MultiNLI contains pairs from ten distinct genres
matched - from same genres
mismatched - from other genres

In contrary of the SICK dataset the annotators were given the freedom
to write themselves a conclusion sentence
They also knew the context of the dataset (it comes from image
captions)
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Examples from SICK, SNLI, Multi-NLI (Talman and
Chatzikyriakidis, 2019)
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Annotation Artifacts in Natural Language Inference Data
(Gururangan et al., 2018)

The paper showed that the data leaves clues about the labels
It makes it possible to identify the label from the hypothesis
Simple classification models -> 67% of SNLI and 53% of MultiNLI
Linguistic phemomena like negation and vagueness correlates with the
classes
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Annotation Artifacts in Natural Language Inference Data

Criteria
Entailment - h is definitely true given p
Neutral - h might be true given p
Contradiction - h is definitely not true given p
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Annotation Artifacts in Natural Language Inference Data
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Annotation Artifacts in Natural Language Inference Data

Premise - Two dogs are
running through a field
Entailment -
There are animals outdoors.
Neutral -
Some puppies are running to
catch a stick.
Contradiction -
The pets are sitting on a
couch
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Annotation Artifacts in Natural Language Inference Data
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Testing the Generalization Power of Neural Network Models
across NLI Benchmarks

Discussed in (Talman and Chatzikyriakidis, 2019)
Conference paper on BlackboxNLP1

Current SOTA systems are over 90% accuracy on SICK, SNLI,
Multi-NLI
The goal of the paper is to show that these results are benchmark
specific
They trained six SOTA neural models
They showed that each of them has problems generalizing

1https://blackboxnlp.github.io/
Adam Kovacs (TU-Wien) NLI May 24, 2021 26 / 38
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Neural NLI models (Glockner, Shwartz, and Goldberg, 2018)
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The trained models

BiLSTM-max - Standard BiLSTM architecture with max pooling
Hierarchical BiLSTM Max Pooling Architecture (HBMP)
Enhanced Sequential Inference Model(ESIM) - Enhanced LSTM
architecture with Attention
Knowledge-based InferenceModel (KIM) enriches ESIM with external
knowledge
ESIM + ELMo - ESIM architecture with ELMo contextualized
embeddings
BERT-base - Fine tuning BERT

Adam Kovacs (TU-Wien) NLI May 24, 2021 28 / 38



Combinations of the models
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SNLI models
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MultiNLI models
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SNLI+MultiNLI models
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Breaking NLI Systems with Sentences that Require Simple
Lexical Inferences (Glockner, Shwartz, and Goldberg, 2018)

The authors constructed a new test set
The premise remained the same from SNLI
In the hypothesis they replaced a single term from the premise

Contradiction
The man is holding a saxophone -> The man is holding an electric guitar

Neutral
A little girl is very sad -> A little girl is very unhappy

Entailment
A couple drinking wine → A couple drinking champagne
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Results (Glockner, Shwartz, and Goldberg, 2018)

Figure: Training models on SNLI and testing on the new test set. Big drop in the
performance.
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Results (Glockner, Shwartz, and Goldberg, 2018)

Figure: WordNet models solve the problem better.
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Outlook to other datasets - Lexical Entailment - Semeval

Lexical Entailment is a relaxed version of NLI, where we are only
concerned with IS_A relations
Semeval task “Predicting Multilingual and Cross-lingual (graded)
Lexical Entailment" (Glavas:2020)
From HyperLex (Vulic:2017b)
Candidate word pairs for human annotation were gathered from the
USF (Nelson:2004) and WordNet (Miller:1995) databases.
mole -> animal
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Outlook to other datasets - SherLlic

More challenging dataset -> SherLlic dataset of lexical inference in
context (Schmitt:2019)
Extracting inference candidates from the ClueWeb corpus
(Gabrilovich:2013)
The pairs are chosen based on distributional evidence
This makes them completely novel
run entails lead if PERSON and COMPANY (e.g., Bezos runs
Amazon)
Does not if COMPUTER and SOFTWARE, as in my mac runs macOS.
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