Using adaptive knowledge graphs in neural dialogue generation

Patrik Purgai

Chatbots

Domain specific

- Rasa
- Luis
- Dialogflow

Open domain

- Blender
- Cleverbot

Rule-based

- Pattern matching ELIZA
- AIML (Artificial Intelligence Markup Language) Mitsuku
- Chatscript SUZETTE

AIML

<category> <pattern>MY NAME IS *</pattern> <template>Hi there, my name is Andrew.</template> </category>

<category> <pattern>GUESS A NUMBER</pattern> <template> <random> 1 6 227 </random> </template> </category>

Neural Network based

- RNN (LSTM)
- Transformer
- BERT
- GPT-2

y \mathbf{y}_{t-1} **y**_t **y**_{t+1} Why Why Why Why **h** *t+1* f h h f t-1h (f f Unfold t Wxh Wxh Wxh Wxh x x_{t-1} x_{t+1} x_t

RNN

Attention Mechanism

Model Dimensionality: 1024

Model Dimensionality: 1280

Model Dimensionality: 1600

BERT vs GPT-2

Retrieval-based

- Speaker-Aware BERT Gu et al. (2020)
- Poly-encoders Humeau et al. (2019)

Bi-Encoder

Cross-Encoder

Speaker Aware BERT

[SP1] Hi [SP2] Hello [SP1] How are you? [SEP] [SP2] I am fine thanks!

Neural Network based - Generative

- A Neural Conversational Model Vinyals et al. (2015)
- DialoGPT Zhang et al. (2019)
- Towards a Human-like Open-Domain Chatbot (Meena) Adiwardana et al. (2020)
- Recipes for building an open-domain chatbot Roller et al. (2020)

Seq2Seq Sutskever et al. (2015)

Neural Conversational Model Vinyals et al. (2015)

Decoder LSTM

RESPONSE

DialoGPT Zhang et al. (2019)

- Reddit conversations
 - 146.8M training instances
 - \odot 3.87B source tokens
 - 2.14B target tokens

• Different Models

- O 117M
- 345M + Reverse
- O 762M

- **(User)** Does money buy happiness?
- **<Bot>** Depends how much money you spend on it .
- **(User)** What is the best way to buy happiness ?
- **‹Bot›** You just have to be a millionaire by your early 20s, then you can be happy .
- **<User>** This is so difficult !
- **(Bot)** You have no idea how hard it is to be a millionaire and happy . There is a reason the rich have a lot of money

Meena Adiwardana et al. (2020)

User: How are things?

Meena: They're good. How about you?

User: I'm trying to decide what to watch

Meena: What are some of your favorite shows?

User: I like the Good Place

Meena: I haven't watched that. My favorite shows are Supernatural, and Star Trek: TNG.

User: What is TNG?

Evolved Transformer Encoder Block

Evolved Transformer Decoder Block Evolved Transformer Decoder Block Evolved Transformer Decoder Block Evolved Transformer Decoder Block Evolved Transformer Decoder Block Evolved Transformer Decoder Block Evolved Transformer Decoder Block Evolved Transformer Decoder Block Evolved Transformer Decoder Block Evolved Transformer Decoder Block Evolved Transformer Decoder Block Evolved Transformer Decoder Block Evolved Transformer Decoder Block Evolved Transformer Decoder Block

Meena: The Next Generation

Blender Roller et al. (2020)

- Blending skills
 - Engaging use of personality (PersonaChat)
 - Engaging use of knowledge (Wizard of Wikipedia)
 - Display of empathy (Empathetic Dialogues)
 - Ability to blend all three seamlessly (BST)
- Retrieve and refine

Generative Decoding

• Deterministic

- \odot Greedy Decoding
- O Beam Search
- Sampling
 - Top-k
 - \bigcirc Nucleus
- Similarity search (Continuous output)

Beam search

Holtzman et al. (2020)

Enhancing Beam search

• Response length

- Hard coded minimum
- Response length prediction
 (Blender) 4 class classifier (<10, <20, <30, >30)
- Subsequence blocking
 Not allowing existing n-grams

Top-k decoding

Hyperparameter: K (sample size)

Nucleus decoding

Hyperparameter:
p (probability mass)

MMI Decoding

Forward + Backward language model

1. The forward model generates the output and computes $\rm P_{forward}$ 2. The backward model computes $\rm P_{backward}$

Output is then scored by $P_{backward} + P_{forward}$

Similarity Search (Continuous output)

Method:

- $\, \odot \,$ Model output is not projected onto the vocabulary
- \odot Objective is to minimize Sim(v_{output}, v_{target})
- $\odot~V_{\rm target}$ is drawn from pre-trained embeddings

Advantages:

- Faster training
- \circ Interpretable output

Issue with end-to-end solutions

- Bad interpretability
 - Knowledge is stored as parameter values
 - \odot We can't inspect the cause of a bad answer
- Information hallucination
 Example: "Cats have three legs"

Knowledge graphs

Architecture

- Word Embedding
 - Fasttext
- Graph Embedding
 - TransE
- Graph Decoder
 - LSTM
- Response Generator
 - Transformer
 - \circ Continuous output
- Entity Linker
 - BERT

Dataset

OpenDialKG

Moon et al. (2019)

91031 messages
100813 entities
1358 relations
1190658 triplets

```
{
  "Message": "Do you like Iron Man",
  "Metadata": [
       [
            "Iron Man",
            "starred_actors",
            "Robert Downey Jr."
       ]
    ]
}
```

Word embeddings (Fasttext)

Graph embeddings

- **DeepWalk** Perozzi et al. (2014)
- TransE Bordes et al. (2013)
- **TransR** Lin et al. (2015)

TransE Bordes et al. (2013)

Knowledge triplet:

Mona Lisa (head), is_in (relation), Louvre (tail)

$$V_{head} + V_{relation} = V_{tail}$$

Entity and Relation Space

TransR Lin et al. (2014)

Each relation has its own transformation matrix: M_r

$$M_r V_h + V_r = M_r V_t$$

Entity Linker

Limited information in OpenDialKG

Labels are learned with BCE objective

Entity Labels

Graph Decoder

Relation Label

Response Generator

- Transformer encoder-decoder architecture
 - additional cross-attention layer for the entity node representations

Continuous outputs with dot-product loss + negative sampling
 O (Future work) Decoding entity nodes directly

Response Generator

Baselines

- GPT-2 (345M)
- XLNet (110M)
- Vanilla Transformer
- Continuous Transformer

Automatic Metrics

• Length

Generated data: Average length of model outputs Test data: Delta length compared to gold responses

BLEU

Modified precision score of n-gram overlaps Common metric in NMT Low correlation with human judgement

• WMD

WMD

Results

Model	Decoding	Length		WMD		BLEU	
		Mean	Std	Mean	Std	Mean	Std
GPT-2 (small)	Greedy decoding	10.2	3.5	2.0	0.4	0.1	0.0
	Beam Search $k = 3$	12.1	3.6	1.7	0.5	0.1	0.0
	Beam Search $k = 5$	12.0	3.5	1.6	0.4	0.1	0.0
	Top-k Sampling $k = 100$	14.2	3.8	1.6	0.6	0.1	0.0
	Nucleus decoding $p = 0.1$	12.1	3.9	1.7	0.6	0.2	0.1
	Greedy decoding	9.4	3.4	2.2	0.3	0.1	0.0
XLNet	Beam Search $k = 3$	11.2	3.2	1.9	0.4	0.1	0.0
(base)	Beam Search $k = 5$	12.9	3.3	1.8	0.3	0.2	0.1
	Top-k Sampling $k = 100$	14.3	4.3	1.9	0.6	0.1	0.0
	Nucleus decoding $p = 0.1$	14.1	4.5	1.8	0.5	0.1	0.0
Transformer	Greedy decoding	7.1	2.2	2.3	0.2	0.0	0.0
	Beam Search $k = 3$	8.5	2.0	2.3	0.4	0.0	0.0
	Beam Search $k = 5$	9.4	2.8	2.2	0.4	0.0	0.0
	Top-k Sampling $k = 100$	9.4	4.1	2.3	0.4	0.1	0.0
	Nucleus decoding $p = 0.1$	9.6	4.7	2.3	0.3	0.1	0.0
Continuous Transformer	Similarity Search	9.8	3.3	2.1	0.3	0.0	0.0
KG- Enhanced Transformer	Similarity Search	12.8	3.4	1.6	0.4	0.2	0.1

Generated dialogues

Input	Method	Target	
	GPT-2 (small) Beam Search k = 5	You might enjoy Cloverfield with Drew Barrymore or The Martian. They are both Sci-Fi films.	
	GPT-2 (small) Nucleus decoding p = 0.1	$\begin{array}{c c} \text{GPT-2 (small)} \\ \text{Nucleus decoding} \\ p = 0.1 \end{array} \qquad \begin{array}{c} \text{Sure, do you prefer Sci-Fi} \\ \text{or Adventure movies?} \end{array}$	
	XLNet (base) Beam Search k = 5	It is starring Michael Fassbender, who also starred in X-Men: First Class and X-Man 2. Do you like movies that he stars in?	
I like the movie "The Martian", could you recommend a movie similar to it?	XLNet (base) Nucleus decoding p = 0.1	I do! I love Sci Fi movies as well. Have you seen either of those?	Do you like The Martian because it stars Matt Damon?
	Transformer Nucleus decoding p = 0.1	This is a good one	
	Continuous Transformer	Have you seen The Running Man?	
	KG-Enhanced Transformer	It is written by James Patterson, starring Matt Damon and also stars Tracie Thoms. Do you like them?	

KG-enhanced transformer

- [Human] Hi
- [Model] Hello, have you heard of the movie The Hobbit: Desolation of Smaug?
- [Human] No, can you tell me more about it?
- [Model] It is a fantasy adventure film starring James Nesbitt. Do you like this actor or would you like to know other movies he has starred in?
- [Human] List some of his movies please.
- [Model] Sure! He also starred in The Way and The Amateurs. Have you seen either of those?
- [Human] What is "The Way' about?
- [Model] It's a teen film, but it was directed by Marc Forster who also wrote the movie The Valley of Elah which stars Tom Hanks.
- [Human] Oh I see. Can you recommend me a Sci-Fi movie?
- [Model] Sure! White Televison and Undertow are good ones as well. Have you seen either of those?

GPT-2

- [Human] hi
- [Model] greetings, i'm gerald.
- [Human] how are you ?
- [Model] good, thanks. getting ready for another hike, i love hiking!
- [Human] oh realy? where are you going?
- [Model] pikes peak. i am curently exploring famous mountains when i have time.
- [Human] that is cool are you going alone?
- [Model] my brother is in the us, we go hiking with him every month.
- [Human] how old are you by the way?
- [Model] a little under 46 years old
- [Human] are you in a relationship?
- [Model] yes i am married, 3 boys, i am pregnant again. i am too busy to focus

Conclusion

- Lack of automatic metrics for checking factual accuracy
- Lack of datasets for this purpose
- Unsatisfactory results from the proposed architecture

- + I paved the way for future work
- + I created a framework for training chatbots from pre-trained transformers:

https://github.com/bme-chatbots/dialogue-generation

Future work

- Implementing pre-trained transformer as the response generator
- Improving the OpenDialKG dataset
- Finding better automatic metric

References

- arxiv.org/abs/1706.03762 (Transformer)
- jalammar.github.io/illustrated-gpt2/ (GPT-2)
- yashuseth.blog/2019/10/08/ (Knowledge graph)